idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.11.2019 10:16

Hoffnung auf Silicium-Solarzellen mit deutlich höheren Wirkungsgraden: Neuer Syntheseweg zu löslichen Silicium-Clustern

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Theoretische Rechnungen zeigen, dass Silicium-Solarzellen unter bestimmten Bedingungen einen wesentlich höheren Wirkungsgrad haben könnten. Ein Zugang zu entsprechend modifiziertem Silicium könnten kleine Silicium-Cluster sein. Bisher waren diese jedoch nicht in löslicher Form zugänglich, was Voraussetzung für eine vielseitige Verarbeitung ist. Forscher der Technischen Universität München (TUM) haben nun einen einfachen Syntheseweg dafür entdeckt.

    Die weltbesten Silicium-Solarzellen besitzen derzeit einen Wirkungsgrad von 24 Prozent. Die theoretische Grenze liegt bei rund 29 Prozent. „Das liegt daran“, erläutert Thomas Fässler, Professor für Anorganische Chemie mit Schwerpunkt Neue Materialien an der TU München, „dass das in der Diamantstruktur kristallisierende Silicium nur eine indirekte Bandlücke nutzen kann.“

    Forscher träumen daher von Materialien in denen die Silicium-Atome so angeordnet sind, dass eine direkte Bandlücke entsteht, die sie für die solare Energieproduktion nutzen können. Als Modellverbindungen dafür sieht die Wissenschaft kleine Silicium-Cluster an. Hier lassen sich die Atome anders anordnen als im kristallinen Silicium.

    „Solche Verbindungen sind auch für eine Vielzahl weiterer chemischer Experimente interessant“, sagt Professor Fässler. Gezielt können wir derzeit in wenigen Syntheseschritten vier und neun Silicium-Atome zu Tetraedern beziehungsweise einer fast kugelförmigen Struktur zusammenfügen. Die Synthesen und die Isolierung der Atomcluster waren bisher aber sehr aufwändig. Hier sind wir nun einen entscheidenden Schritt vorangekommen.“

    Eine Traube aus neun Silicium-Atomen

    Beim Zusammenschmelzen von Kalium und Silicium entsteht eine Verbindung aus 12 Kalium- und 17 Silicium-Atomen, ein graues Pulver. Mit einem Trick gelang es nun Erstautor Lorenz Schiegerl in flüssigem Ammoniak die löslichen, neunatomigen Cluster zu stabilisieren: Zum Ammoniak gab er ein organisches Molekül hinzu, das die Kalium-Atome einschließt.

    „Diese einfache Synthese öffnet uns, ausgehend von elementarem Silicium, den Weg zu vielfältigen chemischen Experimenten mit diesen Clustern“, sagt Professor Fässler. „Im Lösungsmittel Pyridin wird der Cluster beispielsweise durch zwei Wasserstoff-Atome stabilisiert, ähnlich den vermuteten Zwischenstufen bei der großtechnischen Herstellung von polykristallinem Silicium, das unter Einsatz von Silanen oder Chlorsilanen für kommerziell verfügbare Solarzellenmodule hergestellt wird.“

    Aufbau neuer Strukturen

    Besonders vielversprechend ist ein weiterer Reaktionsweg zu Verbindungen des Silicium-Clusters, bei denen drei der neun Silicium-Atome sich mit Molekülen verbinden, die wiederum Silicium oder beispielsweise auch Kohlenstoff oder Zinn enthalten. In den rotbraun gefärbten Lösungen liegen die zurzeit siliciumreichsten, bekannten Cluster vor. Damit eröffnen sich ganz neue Möglichkeiten Silicium mit modifizierten Strukturen aus Lösung abzuscheiden.

    „Denkt man diesen Weg weiter, sollten auch Kopplungen der Cluster möglich sein, um größere Silicium-Strukturen aufzubauen. Damit kämen wir den Wünschen der Theoretiker schon sehr nahe“, sagt Professor Fässler. „Auf jeden Fall haben wir hier die Tür zu einer faszinierenden neuen Chemie aufgestoßen.“

    Mehr Informationen:

    Das Projekt wurde von der der WACKER Chemie AG im Rahmen des „WACKER-Instituts für Siliciumchemie“ an der TUM, dem Bayerischen Forschungsverbund „Solar Technologies Go Hybrid” und der Academy of Finland gefördert. Die Elektronenstrukturrechnungen führte Prof. Dr. Karttunen, Aalto Universität, Helsinki (Finnland) am finnischen IT Center for Science (CSC) durch.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Thomas F. Fässler
    Technische Universität München
    Professur für Anorganische Chemie mit Schwerpunkt Neue Materialien
    Lichtenbergstr. 4, 85748 Garching
    Tel.: +49 89 289 13131
    E-Mail: thomas.faessler@lrz.tum.de
    Web: https://www.department.ch.tum.de/acnm/willkommen/


    Originalpublikation:

    Silicon Clusters with Six and Seven Unsubstituted Vertices via a Two-step Reaction from Elemental Silicon
    L. J. Schiegerl, A. J. Karttunen, W. Klein, T. F. Fässler
    Chemical Science, 2019, 10, 9130 – 9139 – DOI: 10.1039/C9SC03324F
    https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03324f

    Charged Si9 Clusters in Neat Solids and the Detection of [H2Si9]2− in Solution – A Combined NMR, Raman, Mass Spectrometric, and Quantum Chemical Investigation
    L. J. Schiegerl, A. J. Karttunen, J. Tillmann, S. Geier, G. Raudaschl-Sieber, M. Waibel, T. F. Fässler
    Angew. Chem. Int. Ed. 2018, 57, 12950 –12955 – DOI: 10.1002/ange.201804756
    https://onlinelibrary.wiley.com/doi/10.1002/ange.201804756


    Weitere Informationen:

    https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35779/ Link zur Pressemitteilung


    Bilder

    Doktorand Kevin Frankiewicz forscht im Labor von Prof. Dr. Thomas F. Fässler mit neunatomigen Silicium-Clustern, gelöst in flüssigem Ammoniak (rote Lösung).
    Doktorand Kevin Frankiewicz forscht im Labor von Prof. Dr. Thomas F. Fässler mit neunatomigen Silici ...
    Bild: Uli Benz / TUM
    None

    Aus neunatomigen Silicium-Clustern sollten sich auch größere Strukturen aufbauen lassen.
    Aus neunatomigen Silicium-Clustern sollten sich auch größere Strukturen aufbauen lassen.
    Bild: A. J. Karttunen / Aalto Universität
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Chemie, Energie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Doktorand Kevin Frankiewicz forscht im Labor von Prof. Dr. Thomas F. Fässler mit neunatomigen Silicium-Clustern, gelöst in flüssigem Ammoniak (rote Lösung).


    Zum Download

    x

    Aus neunatomigen Silicium-Clustern sollten sich auch größere Strukturen aufbauen lassen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).