idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.05.2021 13:28

Mülheimer Forscher lösen ein weiteres Rätsel der Photosynthese

Isabel Schiffhorst Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kohlenforschung

    Die hohe Effizienz des natürlich Wasserspaltungskatalysators könnte durch eine chemische Isomerisierungsreaktion erklärt werden

    “Grüner” Wasserstoff wird häufig als das “Petroleum von Morgen” bezeichnet. Um eine klimaneutrale Versorgung mit Brennstoffen zu gewährleisten, muss die Energieindustrie von Kohlenstoff basierten Brennstoffen auf „Solar fuels“ umstellen, welche mit Hilfe von Sonnenlicht im Rahmen einer artifiziellen Photosynthese gewonnen werden. Ein Baustein auf dem langen und komplizierten Weg zu dieser Umstellung, ist ein präzises Verständnis der Chemie im innersten Zentrum der biologischen Photosynthese. Die Forschungsgruppe um Dr. Dimitrios Pantazis am Max-Planck Institut für Kohlenforschung leistet in dem Bereich der photosynthetischen Wasseroxidation bereits seit Jahren bahnbrechende Beiträge.

    Gemeinsam mit internationalen Kooperationspartnern hat das Team nun eine neuartige Reaktion im aktiven Zentrum des wasseroxidierenden Katalysators (dem „Oxygen Evolving Complex“, OEC) entdeckt, welche neues Licht auf den Reaktionsmechanismus dieser biochemisch zentral wichtigen Reaktion wirft. Die Entdeckung dreht sich um eine neuartige „Isomerisierungsreaktion“, bei welcher chemische Bindungen innerhalb eines Moleküls gebrochen und in anderer Form neu geknüpft werden. Die entstehende Verbindung bezeichnet man dann als ein „Isomer“ der Ausgangsverbindung.

    Isomere treiben parallele Reaktionsschritte in der biologischen Wasseroxidation

    Die in der Zeitschrift “Angewandte Chemie“ erschienene Publikation von Pantazis und Koautoren benutzt modernste quantenchemische Methoden in Kombination mit anspruchsvollen magnetischen Messmethoden („Electron Paramagnetic Resonance“, EPR, Spektroskopie), um strukturelle Einblicke in die Reaktionsintermediate der Wasseroxidation zu erhalten. Die Analyse der Daten legt nahe, dass bereits im Ausgangszustand des Enzymes (dem „resting state“ oder auch „S1 State“ genannt) zwei Isomere des Katalysators vorliegen, welche die Forscher als „Jahn-Teller Orientierungs-Isomere“ bezeichnet haben. Dieser Effekt führt dazu, dass die im aktiven Zentrum der Photosynthese enthaltenen Manganionen in unterschiedlichen Richtungen Verzerrungen ihrer Koordinationssphäre erleiden können, welche zu der beobachteten strukturellen Vielfalt führen.

    Diese Beobachtung ist insofern von höchster Bedeutung, als dass die verschiedenen Isomere im Ausgangszustand, in der logischen Konsequenz auch zu unterschiedlichen Reaktionspfaden im weiteren Verlauf der Reaktion führen müssen – eine Option, die bisher noch nie in der Literatur diskutiert wurde. Das wiederum bedeutet, dass es in der natürlichen Photosynthese nicht einen, sondern mindestens zwei unterschiedliche Reaktionsmechanismen gibt, welche parallel zueinander ablaufen. Diese mechanistische Vielfalt, so Dr. Pantazis, könnte zu der enormen Effizienz und Selektivität beitragen, mit welcher die Natur diese zentrale biochemische Reaktion ausführt. Diese unerwarteten Ergebnisse lüften nicht nur rein weiteres Geheimnis der Photosynthese, sondern geben Anlass zu einer Vielzahl von neuen Fragen, welche die Photosynthese in den kommenden Jahren beflügeln wird.

    Die Arbeit “Orientational Jahn–Teller Isomerism in the Dark-Stable State of Nature’s Water Oxidase” ist in der Zeitschrift „Angewandte Chemie“ erschienen.


    Wissenschaftliche Ansprechpartner:

    Dr. Dimitrios Pantazis
    Forschungsgruppenleiter
    Molekulare Theorie und Spektroskopie
    Wasserspaltung
    +49 208/306-2156
    dimitrios.pantazis@kofo.mpg.de


    Originalpublikation:

    Publication: M. Drosou, G. Zahariou, D. A. Pantazis. “Orientational Jahn–Teller Isomerism in the Dark-Stable State of Nature’s Water Oxidase”, Angew. Chem. Int. Ed. (2021) https://doi.org/10.1002/anie.202103425


    Bilder

    Zwei Isomere des wasseroxidierenden Katalysators mit Hilfe von Quantenchemie und EPR Spektroskopie entdeckte strukturelle Heterogenität
    Zwei Isomere des wasseroxidierenden Katalysators mit Hilfe von Quantenchemie und EPR Spektroskopie e ...

    MPI für Kohlenforschung


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Zwei Isomere des wasseroxidierenden Katalysators mit Hilfe von Quantenchemie und EPR Spektroskopie entdeckte strukturelle Heterogenität


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).