idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.05.2023 13:42

TimeTeller reads your inner clock: Tenth spin-off of the BIH Digital Health Accelerator

Dr. Stefanie Seltmann Presse- und Öffentlichkeitsarbeit
Berlin Institute of Health in der Charité (BIH)

    Tenth spin-off of the BIH Digital Health Accelerator pinpoints the best time to exercise, sleep and take medicine

    An interdisciplinary team led by Prof. Angelo Relógio, a scientist at Charité’s Molecular Cancer Research Center (MKFZ) and Institute for Theoretical Biology and the MSH Medical School Hamburg, has developed a non-invasive method for profiling a person’s unique circadian rhythm. Starting with a simple saliva sample, the team of experts can create a detailed description of the body’s internal clock by combining molecular analysis and computational modeling.

    The goal is to provide personalized recommendations for adjusting lifestyle factors or treatment timing to the circadian rhythm.

    “The biological clock, also known as the circadian clock, ticks in virtually every cell of the body,” explains Prof. Angela Relógio. “It regulates the timing of many cellular and molecular mechanisms, such as cell division or metabolic processes, and plays a vital role in maintaining human health. If the circadian rhythm is disrupted, diseases can develop including sleep disorders, depression, diabetes, neurodegenerative diseases, obesity and cancer.”

    Personal rhythm influences health and well-being

    Prof. Relógio directs the Circadian Medicine and Systems Biology Group at Charité’s Molecular Cancer Research Center and Institute for Theoretical Biologyas well as the Institute for Systems Medicine at the MSH Medical School Hamburg. In addition to having a background in physical-technological engineering, she also has a doctorate in cell and molecular biology. This rare combination enables her to develop and lead the TimeTeller project. “Circadian rhythms and thus the timing of molecular processes differ from person to person,” she reports. “Knowing your personal circadian rhythm and adjusting activities like sleep, exercise and medication intake accordingly can improve your general health and well-being. In cancer patients, for example, we suspect that we could optimize treatment efficacy and reduce side effects by adjusting the timing of medical treatment to the individual patient’s circadian rhythm. This could improve patients’ quality of life during treatment, while also lowering costs for healthcare systems.”

    But how do you read the circadian clock? “We know that every cell in the human body regularly increases and decreases the activity of many genes,” explains Prof. Relógio. “For example, the genes that control cell division or metabolism are more or less active during certain parts of the 24-hour cycle. Since we assume that all cells in the body work synchronously, we can infer the internal circadian clock by analyzing gene activity in salivary cells.”

    Clock in salivary cells ticks individually and synchronously with other cells’ clocks

    So, Prof. Relógio and her team of scientists determined the activity of at least two genes in cells from saliva samples, collected from subjects at different times of the day, using mRNA: the more mRNA-molecules are present, the more frequently the gene was transcribed.

    “We then developed a mathematical model that uses the gene activities to calculate when is the best time to exercise, sleep or take medicine,” reports Prof. Relógio. For example, the scientists were able to successfully predict the optimal time for athletes to train. They also worked with cancer patients, calculating when drugs should best be administered to cause cancer cells to die while minimizing the side effects on healthy cells.

    Technology to be validated in clinical trials

    “So far, we have retrospectively tested our technology in order to find out whether it could have predicted the observed effects,” explains Prof. Relógio. “But currently we are involved in different clinical trials to validate our method further. Our goal is to help physicians choose the best time for treatment and to help healthy people adjust their daily activities to their internal clock in order to get or stay healthy.”

    TimeTeller recently secured its next round of funding through the InnoRampUp program of the Hamburg Investment and Development Bank (IFB Hamburg), and is currently in discussions to establish collaborations with a number of pharmaceutical companies. In March 2023, the partners spun TimeTeller GmbH out of Charité.

    Translational ecosystem of Charité, BIH and Stiftung Charité provides support

    The Berlin Institute of Health at Charité (BIH), Charité – Universitätsmedizin Berlin and Stiftung Charité have helped move the TimeTeller project forward through a range of translational tools. Inventors 4 Health (I4H), a pilot program for Charité scientists with entrepreneurial ambitions funded by Stiftung Charité and run by SPARK-BIH, supported Prof. Relógio in 2019 in further developing the idea into TimeTeller. Starting in 2020, as part of the BIH Digital Health Accelerator (DHA) program from Charité BIH Innovation (CBI), the team focused on developing the medical tool, including its technological, business, regulatory, and market access aspects, and preparing for the launch of the spin-off company.

    Successful translation of research results

    “The successful transfer of Prof. Relógio’s research results into a company is a tangible example of the potential that can be unleashed by translational medicine,” says Prof. Christopher Baum, Chair of the BIH Board of Directors and Charité’s Chief Translational Research Officer. “This requires well-designed partnerships, in this case with Stiftung Charité, and appropriate tools such as the I4H pilot and our DHA program to support motivated and committed innovators.”

    “We are extremely pleased for the TimeTeller team,” say Tim Huse and Dorothée Marie-Louise Döpfer of the BIH’s DHA program. “Their vision, perseverance, and commitment to improving patients’ health and quality of life have really impressed us. We wish the team all the very best and success, and look forward to following their progress.”

    About TimeTeller
    More information about TimeTeller can be found at https://www.time-teller.eu. A recent publication examining circadian medicine and the TimeTeller tool can be found here: https://www.frontiersin.org/articles/10.3389/fdgth.2023.1157654/full

    ---------------------------

    About the Berlin Institute of Health at Charité (BIH)
    The mission of the Berlin Institute of Health at Charité (BIH) is medical translation: transferring biomedical research findings into novel approaches to personalized prediction, prevention, diagnostics and therapies and, conversely, using clinical observations to develop new research ideas. The aim is to deliver relevant medical benefits to patients and the population at large. As the translational research unit within Charité, the BIH is also committed to establishing a comprehensive translational ecosystem – one that places emphasis on a system-wide understanding of health and disease and that promotes change in the biomedical translational research culture. The BIH was founded in 2013 and is funded 90 percent by the Federal Ministry of Education and Research (BMBF) and 10 percent by the State of Berlin. The founding institutions, Charité – Universitätsmedizin Berlin and the Max Delbrück Center, were independent member entities within the BIH until 2020. Since 2021 the BIH has been integrated into Charité as its so-called third pillar. The Max Delbrück Center is now the Privileged Partner of the BIH.


    Weitere Informationen:

    https://www.bihealth.org/en/notices/timeteller-reads-your-inner-clock-tenth-spin...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).