idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.05.2023 14:05

A virus lurking in the connective tissue

Dr. Andreas Fischer Presse und Kommunikation
Helmholtz-Zentrum für Infektionsforschung

    Study by the HZI shows how a herpesvirus on the one hand rests inactive in connective tissue cells and on the other hand can replicate in the same cells when needed

    It was previously believed that herpesviruses use certain body cells to replicate and other body cells to remain dormant, that is to remain inactive for a longer period of time. This dogma is now being questioned using the example of cytomegalovirus (CMV), a herpesvirus from the beta-herpesvirus subfamily, which can be fatal in immunocompromised transplant recipients. In a new study, scientists from the “Viral Immunology” department at the Helmholtz Centre for Infection Research (HZI) in Braunschweig have discovered that certain connective tissue cells (fibroblasts) are not only used by CMV for replication, as previously assumed. Apparently, CMV can also remain latent in the fibroblasts. The prevailing picture of an either/or - either the CMV uses a certain type of body cell for proliferation, or it remains in an inactive state there - is therefore no longer tenable. A second paradigm shift suggested by the study is the regulation of the CMV latency in cells: Apparently, the virus controls the use of fibroblasts as sites of latent or active infection not only via factors present in the cell, but also via an interaction with the immune system. The results were published in the renowned journal Nature Communications.

    As part of the new study, Dr Katarzyna Sitnik, then working in the “Viral Immunology” department at the HZI, headed by Prof Luka Cicin-Sain, and her colleagues naturally infected mice with murine CMV (mCMV). This variant of the virus is used because human CMV (HCMV) is adapted to humans and cannot infect mice, while mCMV is the naturally occurring CMV infection in mice, causing a disease that is very similar to the one induced by HCMV in humans. The scientists then carried out a systematic analysis of the cells that could carry the latent virus in experimentally infected mice.

    The HZI team with colleagues from the University of Veterinary Medicine in Vienna and the medical faculty of the University of Rijeka, Croatia, were able to show that mCMV genomes are present in various cells of latently infected mice. However, a certain type of cells in connective tissue, so-called fibroblasts, stands out.

    “We were surprised that fibroblasts of all things can serve as a residence for the latent CMV, because we use fibroblasts to grow this virus in tissue cultures,” says Prof Luka Cicin-Sain, head of the “Viral Immunology” department at the HZI, professor for “Individualised infection medicine for viral diseases” at the Centre for Individualised Infection Medicine (CiiM), a joint initiative of the HZI and Hannover Medical School (MHH), and scientist in the research area “Infections of the Immunocompromised Host” at the German Center for Infection Research (DZIF). The result contradicted the conventional wisdom that herpesviruses typically have a specialized cell type to maintain their dormancy and a different cell type in which to replicate. How could the same cells harbor latent and replicating CMV?

    The authors first tested whether stromal cells support the growth of mCMV in natural environments in vivo. They confirmed the results previously shown in tissue culture: CMV also uses fibroblasts to grow in an organism.

    “We naturally wondered how CMV latency is regulated. So we looked for immune reactions - and found what we were looking for,” says Katarzyna Sitnik, the first author of the study, who now works at the University of Veterinary Medicine, Vienna, where key immunological experiments were carried out. The researchers found that while mCMV was able to replicate early after infection in mice lacking a particular molecule called STAT-1, it failed to maintain its genomes in a latent state. STAT-1 is critical for immunological signaling by interferons. “For us, this was the missing building block to explain how the virus manages to use the same cell type both for replication and for the long phases of latency,” says Sitnik.

    So, this study represents a double paradigm shift: On the one hand, it shows that the same cells can be an important site of productive virus replication and latency. On the other hand, it shows that in the case of CMV, the latency is not regulated by intrinsic properties of a specific cell reservoir, but by the interaction of the virus with the immune system.

    This press release is also available on our homepage: https://www.helmholtz-hzi.de/en/news-events/news/view/article/complete/ein-virus....

    Helmholtz Centre for Infection Research:
    Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig and other locations in Germany study bacterial and viral infections and the body's defense mechanisms. They have in-depth expertise in natural products research and their use as a valuable source of novel anti-infectives. As a member of the Helmholtz Association and the German Centre for Infection Research (DZIF), the HZI conducts translational research to lay the foundations for the development of novel therapies and vaccines against infectious diseases. http://www.helmholtz-hzi.de/en/

    German Center for Infection Research:
    At the German Center for Infection Research (DZIF), more than 500 researchers from 35 institutions nationwide are jointly developing new approaches to the prevention, diagnosis and treatment of infectious diseases. The goal is so-called translation: the rapid, effective transfer of research results into clinical practice. In this way, the DZIF paves the way for the development of new vaccines, diagnostics and drugs against infections. Further information: http://www.dzif.de/en.

    University of Veterinary Medicine, Vienna:
    The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,500 employees and 2,500 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

    Contact:
    Susanne Thiele, Spokesperson
    susanne.thiele@helmholtz-hzi.de
    Dr Andreas Fischer, Editor
    andreas.fischer@helmholtz-hzi.de

    Helmholtz Centre for Infection Research
    Press and Communications
    Inhoffenstr. 7
    D-38124 Braunschweig
    Germany
    Phone: +49 531 6181-1400


    Originalpublikation:

    Katarzyna M. Sitnik, Fran Krstanović, Natascha Gödecke, Ulfert Rand, Tobias Kubsch, Henrike Maaß, Yeonsu Kim, Ilija Brizić, Luka Čičin-Šain: Fibroblasts are a site of murine cytomegalovirus lytic replication and Stat1-dependent latent persistence in vivo. Nature Communications, 2023, DOI: 10.1038/s41467-023-38449-x


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).