idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.08.2023 09:38

Bekämpfung multiresistenter Bakterien durch hochauflösende Strukturdarstellungen

Abteilung 2 Referat Medien- und Öffentlichkeitsarbeit
Universität Hamburg

    Ein europäisches Forschungsteam unter Leitung des Fachbereichs Chemie der Universität Hamburg präsentiert in einer Studie Strukturen von 17 verschiedenen Antibiotika-Ribosom-Verbindungen mit hoher Detailauflösung. Das Wissen könnte den Weg für die Entwicklung neuartiger Antibiotika zur Bekämpfung multiresistenter Bakterien ebnen. Die Ergebnisse wurden im Fachjournal „Nature Structural & Molecular Biology“ veröffentlicht.

    Ribosomen sind große Molekülkomplexe, die in den Zellen von Pflanzen, Tieren, Menschen sowie Bakterien vorkommen und Proteine herstellen. Deshalb sind sie wichtige Ziele für Antibiotika, die bei Bakterien an eine Untereinheit der Ribosomen ankoppeln und Ablesefehler oder gar Ablesestopps verursachen. Dadurch werden fehlerhafte Proteine gebildet, die ihre biologische Funktion verlieren, und das Bakterium stirbt. Allerdings können mehr und mehr multiresistente Bakterien die Wirkung von Antibiotika verhindern.

    Um diese Resistenzen zu umgehen, ist das genaue Verständnis der Antibiotika unerlässlich, insbesondere der Antibiotika-Ribosom-Strukturen. In den vergangenen zwei Jahrzehnten wurden Antibiotika-Ribosom-Strukturen für jede wichtige Klasse Ribosom-gerichteter Antibiotika veröffentlicht, die Einblicke in ihre Bindungsstellen und Wirkmechanismen geben.

    Das Team um Prof. Dr. Daniel N. Wilson vom Fachbereich Chemie der Universität Hamburg hat diese Strukturen nun mithilfe von Kryo-Elektronenmikroskopie mit einer Auflösung von 1,6 bis 2,2 Ångström (Å) dargestellt, wobei ein Å dem zehnmillionsten Teil eines Millimeters entspricht. „In der Vergangenheit wurden hauptsächlich Antibiotika-Ribosom-Strukturen mit Auflösungen von 2,5 bis 3,5 Å präsentiert“, sagt Prof. Dr. Daniel N. Wilson. „Die verbesserte Auflösung ermöglicht uns nun, sogar Wassermoleküle zu beobachten, welche die Wechselwirkungen zwischen den Medikamenten unterstützen.“ Die Forschenden fanden heraus, dass im Allgemeinen zehn bis 20 Wasserstoffbindungen mit dem Ribosom interagierten, wobei der Beitrag der Wassermoleküle für die verschiedenen Antibiotikaklassen unterschiedlich ist.

    Die untersuchten Antibiotika umfassen die sechs klinisch relevanten Antibiotikafamilien, darunter die Tetracycline, die bei Atemwegsinfektionen zum Einsatz kommen, Aminoglycoside mit einem breiten Wirkungsspektrum, unter anderem bei Tuberkulose oder Meningitis, sowie die Pleuromutiline gegen Haut- und Weichgewebsinfektionen.

    Für die Studie setzte das Forschungsteam diese Antibiotika auf sogenannte 70S-Ribosomen des Bakteriums „Escherichia coli“ an – ein Kolibakterium, das sich auch im menschlichen Darm befindet. „Wir gehen davon aus, dass diese Informationen in Zukunft für das strukturbasierte Design neuer Antibiotikaderivate genutzt werden können. Indem wir Regionen identifizieren, die verändert werden können, kann das gebundene Wasser gezielt verdrängt werden und so eine Wechselwirkung mit dem Ziel, also dem Bakterium, übernehmen“, sagt Wilson.

    Die hochaufgelöste Darstellung ist Wilson zufolge ein großer Schritt: „Die alten Antibiotika-Ribosom-Strukturen mit weniger hoher Auflösung zeigen, dass die Bindungsstellen für jede Antibiotika-Klasse ähnlich sind, allerdings gibt es in vielen Fällen tiefgreifende Unterschiede in Bezug auf die genaue Position der Wirkstoffe sowie der Wirkstoffbindungsstelle“. Daher seien die hochauflösenden experimentellen Daten benötigt worden, um eine genauere Beschreibung der Interaktionen von Antibiotika mit dem Ribosom zu erhalten.

    An der Studie waren neben der Universität Hamburg auch Forschende des Max-Planck-Instituts für Multidisziplinäre Naturwissenschaften in Göttingen, des Dubochet Center for Imaging at EPFL-UNIL in der Schweiz und des Central European Institute of Technology (CEITEC) in der Tschechischen Republik beteiligt.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Daniel N. Wilson
    Universität Hamburg
    Fakultät für Mathematik, Informatik und Naturwissenschaften
    Fachbereich Chemie
    Tel.: +49 40 42838-2841
    E-Mail: daniel.wilson@chemie.uni-hamburg.de


    Originalpublikation:

    Paternoga, Crowe-McAuliffe, Bock, Koller, Morici, Beckert, Myasnikov, Grubmüller, Nováček, Wilson (2023) Structural conservation of antibiotic interaction with ribosomes, Nature Structural & Molecular Biology.
    https://doi.org/10.1038/s41594-023-01047-y


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).