idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.10.2023 14:01

Evolutionsgeschichte von Natterngift entschlüsselt

Julia Rinner Corporate Communications Center
Technische Universität München

    Jedes Jahr sterben weltweit etwa 100.000 Menschen am Biss einer Giftnatter. Forschende der Technischen Universität München (TUM) haben untersucht, wie das Gift vor 50 bis 120 Millionen Jahren durch die Veränderung eines Gens, das auch in Säugetieren und anderen Reptilien vorkommt, entstand. Die Ergebnisse könnten zukünftig eine bessere Behandlung für Betroffene ermöglichen und erweitern das Wissen in der Therapie für Erkrankungen wie Typ-2-Diabetes oder Bluthochdruck.

    Sobald die Natter zubeißt und ihr Gift überträgt, bindet dieses an Rezeptoren von Nervenzellen und Muskeln und unterbricht dadurch die Kommunikation zwischen den Zellen. Dies führt zunächst zu Lähmungen und ohne ein Gegengift schließlich innerhalb von wenigen Minuten bis Stunden zum Tod. Ein Forschungsteam untersuchte, wie sich die Proteinstruktur von Natterngift, den sogenannten Drei-Finger-Toxinen (3FTxs) im Laufe der Evolution veränderte.

    Wie Natterngift entstand

    Das Team um Burkhard Rost, Professor für Bioinformatik fand heraus, dass sich das Gift von Nattern über die Zeit aus dem Ly-6-Gen entwickelte, das auch in Säugetieren und anderen Reptilien vorkommt und im Körper unter anderem für verschiedene Stoffwechselfunktionen, die Immunantwort von Zellen oder auch für die neuronale Regulierung zuständig ist.

    Dr. Ivan Koludarov, Wissenschaftler am Lehrstuhl für Bioinformatik und Erstautor der Studie sagt: „Unsere Untersuchungen zeigten, dass sich die ersten Schlangenarten vor etwa 120 Millionen Jahren von den Echsen abspalteten. Die heute giftigen Nattern trennten sich vor etwa 50 Millionen Jahren von den anderen Schlangenarten, wobei beide Arten bereits funktionale 3FTx-Gene in sich trugen. Damit veränderte sich das Ly-6-Gen vor 50 bis 120 Millionen Jahren so stark, dass daraus heutzutage ein stark Gift gebildet wird.”

    Im Laufe der Evolution verdoppelte sich das Ly-6-Gen, das den Bauplan für das Toxin bildet, immer wieder, sodass Giftnattern mehrere Kopien des Gens in sich tragen. Auf diesen Kopien sind verschiedene Abschnitte mutiert. Dadurch veränderte sich die Funktion des daraus gebildeten Proteins so stark, dass es seinen ursprünglichen Aufgaben nicht mehr nachkommt, sondern als Gift wirkt.

    Verschiedene Formen des Giftes

    Tobias Senoner, Doktorand am Lehrstuhl für Bioinformatik ergänzt: „Dabei hat sich gezeigt, dass das Gen in den verschiedenen Natternarten auf unterschiedliche Weise mutiert ist. Auf Grundlage der daraus resultierenden Proteinstrukturen können vier Formen des 3FTx-Toxins unterschieden werden. Jede Variante hat spezifische Strukturen und wirkt dadurch auch auf die jeweilige Beute anders.“

    Prof. Burkhard Rost erläutert: „Für unsere Studie sammelten wir alle verfügbaren Informationen aus der Datenbank UniProt, die Daten für Proteine aller Lebewesen und Viren zur Verfügung stellt. Darüber hinaus griffen wir auf biomedizinische und genetische Informationen des National Center for Biotechnology Information zurück. Diese Daten analysierten wir durch die Lupe von Methoden aus der Künstlichen Intelligenz.“

    Verbesserte Behandlung und Arzneimittelentwicklung

    Die Erkenntnisse der Studien tragen dazu bei, die Behandlung von Betroffenen zu verbessern und Fortschritte in der Arzneimittelentwicklung zu erzielen. Durch das Verständnis der Toxine könnten zukünftig neue Methoden zur Behandlung von Erkrankungen wie Typ-2-Diabetes, Bluthochdruck oder auch zur Linderung von Schmerzen entwickelt werden.


    Wissenschaftliche Ansprechpartner:

    Prof. Burkhard Rost
    Lehrstuhl für Bioinformatik
    rost@tum.de
    Tel: +49 (89) 289 - 17808


    Originalpublikation:

    Koludarov, I., Senoner, T., Jackson, T.N.W. et al. Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nat Commun 14, 4861 (2023). doi.org/10.1038/s41467-023-40550-0


    Weitere Informationen:

    https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/evolution...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).