Climate extremes such as heat waves, heavy rainfall or droughts have far-reaching impacts on ecosystems, agriculture, water resources and human health. In order to understand recent extremes and to be able to assess the resulting climate risks, they must be examined in a historical context.
How do recent extremes compare to past events and are there regional long term trends? Thus, data analysts of DKRZ have developed a method that can effectively reconstruct incomplete observation data on climate extremes by using methods of artificial intelligence (AI). The results of the study were published in the internationally renowned journal “Nature Communications” at the end of October 2024.
The analysis of past climate extremes is complicated by the fact that existing datasets of observed extremes generally exhibit spatial gaps and inaccuracies due to inadequate spatial extrapolation. This problem arises from traditional statistical methods used to account for the lack of measurements, particularly prevalent before the mid-20th century.
The study demonstrates how AI can effectively reconstruct sparse observational data of European climate extremes (warm and cold days and nights) and reveal spatial trends across the time span from 1901 to 2018 that is not covered by most reanalysis datasets. The analysis shows that the AI method surpasses established statistical methods such as Kriging. The reconstruction is based on transfer learning with Earth System Model data e.g. large data amounts from the Coupled Model Intercomparison Project CMIP6. The computations used the GPU part of DKRZ's HPC system “Levante”.
The AI reconstructed dataset reveals quantitative evidence for hot and cold extremes in the early 20th century and sheds a new light on the evolution of these extremes. The dataset is provided to the climate community for a better characterization of climate extremes and to improve risk management and policy development.
Ètienne Plesiat, Data analyst at DKRZ: plesiat@dkrz.de
https://doi.org/10.1038/s41467-024-53464-2
Reported heatwave event from September 1911: The figure shows the percentage of days when the daily ...
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Geowissenschaften, Informationstechnik, Meer / Klima, Umwelt / Ökologie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Reported heatwave event from September 1911: The figure shows the percentage of days when the daily ...
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).