idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.06.2018 11:04

Chemische Reaktionen im Licht ultrakurzer Röntgenpulse aus Freie-Elektronen-Lasern

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Ultrakurze, hochintensive Röntgenblitze öffnen das Tor zu den Grundlagen chemischer Reaktionen. Freie-Elektronen-Laser erzeugen solche Pulse, doch es gibt ein Problem: Die Pulse variieren in Länge und Energie. Ein internationales Forschungsteam präsentiert nun eine Lösung: Ein Ring aus 16 Detektoren und ein zirkular polarisierter Laserstrahl ermöglichen es, beide Faktoren mit Attosekunden-Genauigkeit zu bestimmen.

    Freie-Elektronen-Laser (FEL) erzeugen extrem kurze und intensive Röntgenblitze. Mit diesen können Forscher Strukturen vom Durchmesser eines Wasserstoffatoms erkennen. Biomoleküle lassen sich so in höchster Auflösung abbilden und völlig neue Einblicke in den Nanokosmos der Natur gewinnen.

    Schießt man zwei solcher Blitze schnell hintereinander auf eine Probe, so erhält man sogar Informationen über die strukturellen Veränderungen während einer Reaktion: Ein erster Puls löst die Reaktion aus, mit einem zweiten Laserstrahl wird vermessen, wie die Struktur sich durch die Reaktion verändert. Doch die Technologie hat einen Haken: Der zeitliche Verlauf der Intensität und die Länge der Röntgenblitze variieren von Blitz zu Blitz. Das Bild bleibt unscharf.

    Ein von Physikern der Technischen Universität München (TUM) angeführtes internationales Team hat nun eine Lösung gefunden: Mit einem zirkular polarisierten Infrarotlaser und einem Ring aus 16 Detektoren können sie den zeitlichen Verlauf und die Energie jedes Pulses präzise messen. Damit werden die Ergebnisse der einzelnen Pulse vergleichbar.

    Eine Stoppuhr mit Attosekunden-Genauigkeit

    „Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde, oder anders ausgedrückt: Eine Attosekunde verhält sich zu einer Sekunde in etwa wie eine Sekunde zum gesamten Alter des Universums“, sagt Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der TU München. „Doch die energetischen Änderungen in einem Molekül während einer Reaktion sind so unglaublich fein und schnell, dass wir nur mit solch extrem kurzen Pulsen etwas sehen.“

    In seinem Experiment benutzte das Forschungsteam Röntgenblitze der Linac Coherent Light Source in Menlo Park (USA). In der Probenkammer schlagen sie aus Neon-Atomen Elektronen heraus. Treffen diese nun auf einen Infrarot-Lichtimpuls, so werden sie von dessen elektrischem Feld beschleunigt oder abgebremst, je nach dem welche Feldstärke der Lichtpuls gerade hat, wenn das Elektron erzeugt wird.

    Die zirkulare Polarisierung des Infrarotpulses gibt dem Elektron nun zusätzlich noch eine Richtung. Mit einem Ring aus 16 Detektoren sind daher Energie und Dauer des ursprünglichen Röntgenpulses wie auf dem Zifferblatt einer Uhr mit Attosekundengenauigkeit bestimmbar.

    Die Information sowohl über die Energieverteilung als auch über die zeitliche Pulsstruktur soll es künftig erlauben, ganz spezifisch einzelne Reaktionsstellen in komplizierteren Molekülen anzusprechen und deren Einfluss auf den Verlauf der Veränderungen während der Reaktion in Echtzeit zu verfolgen.

    Weiterentwicklung von Freie-Elektronen-Lasern

    „Diese Technik kann nun auch dazu verwendet werden, die Entwicklung der FELs selbst voranzutreiben“, sagt Wolfram Helml, Leiter des Forschungsteams. „Wir erhalten eine sofortige Rückmeldung über die Pulsstruktur während der FEL durchgestimmt wird. So können wir gezielt Röntgenblitze mit ganz bestimmter Dauer oder energetischen Eigenschaften erzeugen.“

    Von besonderem Interesse ist die neue Technik auch für Forschungsarbeiten am neuen European X-ray Free-Electron Laser (Eu-XFEL) in Hamburg, da sie im Unterschied zu anderen Techniken, auch für Messungen mit der hohen Wiederholrate genutzt werden kann, die diese hochmoderne Anlage zur Verfügung stellt.

    Auch im Rahmen des gerade im Aufbau befindlichen Centre for Advanced Laser Applications (CALA) in Garching bei München, wo mithilfe laserbasierter Röntgentechnik Methoden zur Früherkennung und Therapie chronischer Krankheiten entwickelt werden sollen, könnte diese Technologie eingesetzt werden.

    Publikation:

    N. Hartmann, G. Hartmann, R. Heider, M. S. Wagner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, A. K. Kazansky, N. M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee and W. Helml
    Attosecond time–energy structure of X-ray free electron laser pulses
    Nature Photonics volume 12, pages 215–220 (2018) – DOI: 10.1038/s41566-018-0107-6
    https://www.nature.com/articles/s41566-018-0107-6

    Weitere Informationen:

    Gefördert wurden die Arbeiten durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP), durch das Bayerisch-Kalifornischen Hochschulzentrum (BaCaTeC), durch die Europäische Gemeinschaft im Rahmen der Initiative Laserlab-Europe IV, des European XFEL, eines Consolidator Grants des European Research Councils und eines Marie Curie Stipendiums, durch das US Department of Energy (US DOE), das spanische Ministerio de Economia, Industria y Competividad (MINECO), das Schweizer National Center of Competence in Research, Molecular Ultrafast Science and Technology (NCCR-MUST), die Volkswagen Stiftung und durch ein Peter Paul Ewald Stipendium.

    Beteiligt an den Arbeiten zu dieser Publikation waren Wissenschaftler der TU München und der LMU München, des SLAC National Accelerator Laboratory (USA), des Deutschen Elektronen-Synchrotron (DESY), des European X-ray Free-Electron Laser (Eu-XFEL), der Universität Kassel, der Universität Gothenburg (Schweden), der Universität Bern (Schweiz), der University of Colorado in Boulder (USA), der baskischen Universität in San Sebastian (Spanien) und der Lomonossov Universität Moskau (Russland).

    Kontakt:

    Prof. Dr. Reinhard Kienberger
    Technische Universität München
    Lehrstuhl für Laser- und Röntgenphysik, E11
    James Frank Str., 85748 Garching, Germany
    Tel.: +49 89 289 12840 – E-Mail: reinhard.kienberger@tum.de
    Internet: http://www.e11.ph.tum.de

    Dr. Wolfram Helml
    Ludwig-Maximilians-Universität München
    Fakultät für Physik, Lehrstuhl für Experimentalphysik – Laserphysik
    Am Coulombwall 1, 85748 Garching, Deutschland
    Tel.: +49 89 289 14169 – E-Mail: Wolfram.Helml@lmu.de
    Web: https://www.munich-photonics.de/people/details/p/wolfram-helml/


    Weitere Informationen:

    https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34773/ Link zur Presseinformation
    https://www.munich-photonics.de Exzellenzcluster Munich-Centre for Advanced Photonics
    https://www.xfel.eu/index_ger.html European XFEL
    https://www6.slac.stanford.edu/ SLAC National Accelerator Laboratory


    Bilder

    Ultrakurze Röntgenpulse (rosa) ionisieren Neongas im Zentrum des Rings. Ein Infrarotlaser (orange) lenkt die Elektronen (blau) auf ihrem Weg zu den Detektoren ab
    Ultrakurze Röntgenpulse (rosa) ionisieren Neongas im Zentrum des Rings. Ein Infrarotlaser (orange) l ...
    Bild: Terry Anderson / SLAC National Accelerator Laboratory
    None

    Illustration der ringförmig wie auf dem Zifferblatt einer Uhr angeordneten 16 Detektoren.
    Illustration der ringförmig wie auf dem Zifferblatt einer Uhr angeordneten 16 Detektoren.
    Bild: Frank Scholz & Jens Buck, DESY
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Chemie, Elektrotechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).