idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.09.2008 06:00

Supraleitung und Magnetismus - Von Rivalen zu Partnern

Dagmar Baroke Abteilung Kommunikation
Paul Scherrer Institut (PSI)

    Die wilde Quantenwelt produziert Zustände, die in der klassischen Physiklehre nicht vorgesehen sind. Ein erstaunlicher neuartiger Zustand wird in der heutigen Ausgabe des Magazins "Science" von einem internationalen Wissenschaftlerteam um den Physiker Michel Kenzelmann vom Paul Scherrer Institut vorgestellt.

    Die Experimente wurden an der Schweizer Spallations-Neutronenquelle (SINQ) des Paul Scherrer Instituts PSI durchgeführt. Mit dem Neutronenstrahl der SINQ ist es möglich auf mikroskopischer Ebene die inneren Eigenschaften von Materialien zu untersuchen, ohne sie dabei zu zerstören. Mit dieser Methode lassen sich Vorgänge beobachten, die sonst mit keiner anderen Technik zu sehen sind.

    In Zer-Kobalt-Indium verbrüdern sich Supraleitung und Magnetismus

    Dem Forscherteam gelang eine überraschende Entdeckung. Sie stellten fest, dass das untersuchte Material sich magnetisch ordnet, aber nur solange es supraleitend ist. Dieses Ergebnis ist verblüffend, da diese beiden Phänome normalerweise miteinander konkurrieren und sich in einem Material gegenseitig zu verdrängen suchen, hier aber offenbar nur gemeinsam existieren können.

    Wechselwirkung zwischen Magnetismus und Supraleitung

    In elektrischen Leitern wird Strom von Elektronen transportiert. Dabei kommt es zu einem Verlust von Energie, sobald die Elektronen mit den positiven Kristallionen des Leiters zusammenstossen und dadurch von ihrer optimalen Bahn abgelenkt werden. Der verlustfreie Transport von Strom in Supraleitern beruht darauf, dass sich die Elektronen bei tiefen Temperaturen zu sogenannten "Cooper-Paaren" zusammenschliessen. Diese Elektronenpaare haben ganz andere Eigenschaften als einzelne Elektronen und verhalten sich völlig anders; sie gehen in einen neuen Quantenzustand über. Dieser Zustand erlaubt den Cooper-Paaren, sich gegenseitig "abzusprechen" um Zusammenstösse zu vermeiden. Dadurch ist ein verlustfreier Stromtransport möglich.

    Elektronen besitzen ein magnetisches Moment, das man sich wie eine Art Kompassnadel vorstellen muss. In einem Cooper-Paar zeigen die "Kompassnadeln" der beiden Elektronen generell immer in die exakt gegenüberliegende Richtung und heben ihren Magnetismus dadurch auf. Wird in diesem supraleitenden Zustand ein Magnetfeld angelegt geraten die magnetischen Momente des Elektronenpaars in Bedrängnis. Dies geschieht einerseits dadurch, dass das Magnetfeld Ströme induziert, die die Cooper-Paare aufbrechen und andererseits auch weil das Magnetfeld seine magnetische Ordnung auf die magnetischen Momente des Cooper-Paares überträgt. Gelingt dies dem Magnetfeld löst sich das Cooper-Paar auf und der elektrische Leiter verliert seinen supraleitenden Zustand. Auf diese Art rivalisieren magnetische Ordnung und Supraleitung in vielen Materialien um die Vorherrschaft.

    Laut Kenzelmann, Wissenschaftler am PSI und Professor an der ETH Zürich, schliessen magnetische Ordnung und Supraleitung sich zwar nicht immer gegenseitig aus, dulden sich aber höchstens. "Supraleitung und magnetische Ordnung verhalten sich in allen bisher bekannten Materialen wie zwei Rivalen, die um dasselbe Revier kämpfen und den jeweils anderen auszuschalten suchen."

    Supraleitung induziert magnetische Ordnung

    In ihrem Experiment kühlten die Forscher einen Einkristall bestehend aus den Elementen Zer, Kobalt und Indium (CeCoIn5) auf auf minus 273,1 Grad Celsius ab. Bei derartig tiefen Temperaturen hören alle atomaren Bewegungen des Kristalls auf und die durchfliessenden Elektronen können sich zu sich zu Cooper-Paaren zusammenschliessen. Dadurch wird der supraleitende, elektrisch widerstandsfreie Zustand erreicht, der es ermöglicht, den Strom verlustfrei zu transportieren. Anschliessend wurde das Material magnetischen Feldern ausgesetzt.

    Dabei haben die Forscher festgestellt, dass bei hohen magnetischen Feldern ein neuartiger supraleitender Zustand auftritt, der von magnetischer Ordnung begleitet und nicht zerstört wird. Zwar hat man die Koexistenz von magnetischer Ordnung und Supraleitung schon in anderen Fällen beobachtet. Der neue Aspekt in dieser Zer-Verbindung ist jedoch die Tatsache, dass die magnetische Ordnung nur während der supraleitenden Phase auftritt und zusammen mit dieser bei noch höheren magnetischen Feldern im Wesentlichen wieder spurlos verschwindet. Diese Beobachtung legt nahe, dass hier überraschenderweise der Magnetismus von der Supraleitung begünstigt und stabilisiert wird.

    "Unsere Ergebnisse zeigen ganz eindeutig, dass die Supraleitung für das Entstehen dieses Magnetismus entscheidend ist. Die Studie wird helfen genauer zu verstehen, wie sich die Elektronenpaare in magnetischen Supraleitern überhaupt bilden. Wir hoffen, dass dieses Wissen dann zukünftig für technologische Anwendungen genutzt werden kann", erklärt Kenzelmann.

    Literaturhinweis:
    M. Kenzelmann et al.;Coupled Superconducting and Magnetic Order in CeCoIn5; Science, Vol 321, 12 Sept. 2008

    Für weitere Auskünfte:
    Prof. Dr. Michel Kenzelmann, Labor für Methoden und Entwicklung, Paul Scherrer Insitut, Telefon +41 (0)56 310 53 81,
    michel.kenzelmann@psi.ch


    Bilder

    Merkmale dieser Pressemitteilung:
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).