idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.09.2009 16:03

Flinke Vermittler im Gehirn

Dr. Carmen Rotte Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie

    Jede Reaktion, jeder Gedanke und jede Bewegung beruht auf der Weitergabe von Informationen zwischen Nervenzellen. Der gesamte Prozess der Signalübertragung ist äußerst schnell und dauert nur wenige 10.000stel Sekunden. Eine der entscheidenden Grundlagen, die eine schnelle Signalübertragung erst möglich machen, haben nun Wissenschaftler vom Göttinger Max-Planck-Institut für biophysikalische Chemie gemeinsam mit ihren Kollegen an der Vrije Universiteit Amsterdam (Niederlande) aufgeklärt. (Cell, 27. August 2009; Neuron, 27. August 2009)

    Nicht nur Organismen müssen miteinander kommunizieren, um zu überleben: Auch auf zellulärer Ebene ist der Austausch von Informationen lebenswichtig. Ob wir lernen, einen Ball zu fangen, schnell auf ein warnendes Geräusch oder eine Gefahr zu reagieren, oder ein Musikstück zu spielen - erst durch die schnelle und genaue zeitliche Abstimmung der Signalübertragung zwischen den Nervenzellen unseres Gehirns werden derart komplexe Leistungen möglich.

    Nervenzellen nehmen Signale auf, verarbeiten sie und geben sie weiter. Gewöhnlich werden diese Signale über spezielle Botenstoffe übermittelt. Portionsweise verpackt liegen diese in kleine Membranbläschen - synaptische Vesikel - verpackt in der Zelle bereit. Zeigen Signale an, dass eine Botschaft übermittelt werden soll, verschmelzen einige synaptische Vesikel mit der Zellmembran der "sendenden" Zelle. Sie entleeren dabei ihren Inhalt nach außen und lösen in der "empfangenden" Zelle ein Signal aus. Was diesen Prozess auslöst, ist seit langem bekannt: ein Anstieg der Kalziumionen-Konzentration in der Nervenendigung der sendenden Zelle. Membranbläschen sind aber weit mehr als Botenstoff-Behälter. Sie müssen Signale erkennen und Membranen verschmelzen. Hierbei spielen spezielle Proteine, die sogenannten SNAREs, eine wichtige Rolle.

    Der gesamte Prozess der Signalübertragung im Gehirn ist äußerst schnell und dauert nur wenige 10.000stel Sekunden. Was die Informationsvermittlung im Gehirn derart schnell macht, haben Wissenschaftler um Jakob Sørensen vom Göttinger Max-Planck-Institut für biophysikalische Chemie und Matthijs Verhage von der Vrije Universiteit Amsterdam (Niederlande) untersucht.

    Nicht alle Vesikel sind gleich

    "Eine Nervenzelle enthält typischerweise bis zu mehrere hundert Botenstoff-Vesikel, aber nicht alle sind für eine Verschmelzung mit der Membran gleich gut präpariert", erklärt der Göttinger Neurobiologe Jakob Sørensen, der bis vor kurzem als Gruppenleiter in der Abteilung Membranbiophysik von Erwin Neher forschte. Vielmehr müssen die Vesikel erst einen mehrstufigen Reifungsprozess durchlaufen, um in einen verschmelzungsbereiten Zustand zu gelangen - die Grundlage für die schnelle Signalübertragung. Helferproteine positionieren dazu Vesikel in einem ersten Schritt so nahe wie möglich an die Zellmembran und heften sie dort an. Wissenschaftler bezeichnen diesen Prozess als "Docking". Doch welche Mechanismen dabei eine Rolle spielen, darüber war bisher erstaunlich wenig bekannt.

    Dem deutsch-niederländischen Forscherteam ist es jetzt gelungen, die am Docking beteiligten Komponenten aufzuklären. Wie die Wissenschaftler herausfanden, besteht die minimale Docking-Maschinerie aus vier Proteinen. Eines dieser Proteine ist der Kalziumsensor Synaptotagmin-1, der in der Membran der Vesikel verankert ist. Der Kalziumsensor wurde bisher mit der kalziumabhängigen Verschmelzung von Vesikel und Zellmembran in Verbindung gebracht. "Dass der Kalziumsensor bereits beim Docking eine entscheidende Rolle spielt, hatten wir nicht erwartet", sagt Sørensen. Wie die Forscher zeigen konnten, heftet der Kalziumsensor das Vesikel an die Zellmembran an, indem es dort an zwei SNAREs (SNAP-25 und Syntaxin-1) bindet. Das vierte Protein, Munc18-1, wird für das Docking zwar nicht direkt benötigt, doch scheint es dabei eine wichtige "Überwacherfunktion" zu übernehmen. Wie die Ergebnisse der Forscher nahelegen, dient der Komplex aus den vier genannten Molekülen als molekulare Plattform, an die später ein weiteres Vesikelprotein (Synaptobrevin) andocken kann.

    Multitasking-fähiger Sensor

    Experimentelle Bestätigung für diese überraschende Funktion des Kalziumsensors beim Docking-Prozess erhielten jetzt die Forscherkollegen Samuel Young und Erwin Neher am Max-Planck-Institut für biophysikalische Chemie. "Wenn wir den Kalziumsensor an bestimmten Stellen veränderten, so konnten die Fusionskomplexe nicht mehr zusammengebaut werden", erklärt Young. Aber das Repertoire des Synaptotagmins als Kalziumsensor und "Heftklammer" scheint damit noch bei weitem nicht erschöpft. Wie die Göttinger Wissenschaftler herausfanden, sorgt der Kalziumsensor auch für die richtigen "Nachbarschaftsverhältnisse": Die SNARE-Fusionskomplexe werden in unmittelbarer Nähe zu den Quellen des Kalziumionensignals - den Kalziumionenkanälen - positioniert.

    Kontaktfreudige SNAREs

    Wenn eine erhöhte Kalziumkonzentration in der Nervenzelle schließlich das Signal gibt, wird der entstehende SNARE-Komplex vollständig ausgebildet. Dabei treten passende SNAREs miteinander in Kontakt, wodurch die Membranen einander so nahe kommen, dass sie schließlich verschmelzen. "Durch die stufenweise Ausbildung des Fusions-Komplexes muss bei einem Signal der Verschmelzungsprozess nur noch zu Ende geführt werden. Dies könnte erklären, warum er so extrem schnell verläuft", so Sørensen.

    Originalveröffentlichungen:
    Heidi de Wit, Alexander M. Walter, Ira Milosevic, Attila Gulyás-Kovács, Dietmar Riedel, Jakob B. Sørensen, Matthijs Verhage: Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935-946 (2009).

    Samuel M. Young Jr., Erwin Neher: Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63, 482-496 (2009).

    Kontakt:
    Ansprechpartner:
    Prof. Dr. Jakob B. Sørensen, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen
    Tel.: +45 3532 -7931
    E-Mail: jakobbs@sund.ku.dk

    Dr. Samuel M. Young, Abteilung Membranbiophysik
    Max-Planck-Institut für biophysikalische Chemie, Göttingen
    Tel.: +49 551 201 -1297
    E-mail: syoung@gwdg.de

    Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für biophysikalische Chemie, Göttingen
    Tel.: +49 551 201 -1304
    E-Mail: crotte@gwdg.de

    Sie finden diese Pressemeldung mit druckfähigem Bildmaterial in elektronischer Form unter: http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_21/


    Bilder

    Bei normalen Zellen sind die Vesikel nahe der Zellmembran positioniert (links), anders als bei Zellen, in denen der Docking-Prozess gestört ist (rechts).
    Bei normalen Zellen sind die Vesikel nahe der Zellmembran positioniert (links), anders als bei Zelle ...
    Foto: Sørensen/Verhage
    None


    Merkmale dieser Pressemitteilung:
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Bei normalen Zellen sind die Vesikel nahe der Zellmembran positioniert (links), anders als bei Zellen, in denen der Docking-Prozess gestört ist (rechts).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).