Leistungsfähige Energiespeicher für die Automobilindustrie oder Handy-Akkus und Notebooks, die ausreichend Energie auch für langen Einsatz bieten - Wissenschafter der TU Graz lassen diese Anwendungsvisionen ein Stück näher Richtung Umsetzung rücken: Forscher des Instituts für Chemische Technologie von Materialien haben ein neues Verfahren entwickelt, das Silicium für Lithium-Ionen-Batterien nutzbar macht.
Dessen Speicherfähigkeit ist zehnmal höher als beim bislang verwendeten Graphit und lässt damit auf deutliche Verbesserungen für die Nutzer hoffen. Ihre Erkenntnisse - entstanden im Rahmen des EU-Projekts "NanoPoliBat" - haben die Forscher kürzlich gemeinsam mit Kooperationspartner Varta Microbattery zum Patent eingereicht.
Moderne Elektrogeräte wollen mehr Energie und auch die Automobilindustrie sehnt sich nach immer leistungsfähigeren Energiespeichern. Längst reicht die technologische Entwicklung in der Batterieforschung nicht mehr aus: "Für die Entwicklung der nächsten Generation ist eine echte Revolution nötig. Wir brauchen neue Speichermaterialien für Lithium-Ionen-Batterien", erläutert Batterieforscher Stefan Koller, der sich im Rahmen seiner Dissertation mit dem Thema befasst hat. Gemeinsam mit Kollegen aus Wissenschaft und Wirtschaft ist es ihm gelungen ein solches Trägermaterial für elektrochemische Reaktionen kostengünstig zu entwickeln.
Silicium-Gel auf Graphit
Im neu entwickelten Verfahren setzen die Forscher ein siliciumhältiges Gel ein und bringen es auf Graphit als Trägermaterial auf. "Dabei wirkt der Graphit als Puffer, um die großen Volumsänderungen des Siliciums bei der Lithium-Ionen -Aufnahme und -abgabe abzufedern", erklärt Koller. Silicium weist eine rund zehnmal höhere Lithium-Ionen Speicherfähigkeit auf als der bislang kommerziell verwendete Graphit. Das neue Material kann damit bei unveränderter Lebensdauer mehr als die doppelte Menge an Lithium-Ionen speichern. Diese Technik ist weit günstiger als bisher bekannte, bei denen das Silizium aus der Gasphase abgeschieden wird. Herausforderung bleibt die schlechte Speicherdichte der Materialien in der Gegenelektrode in der gesamten Batterie, aber auch daran forschen wir bereits intensiv", schließt Koller.
Bildmaterial bei Nennung der angeführten Quellen honorarfrei verfügbar unter
http://www.presse.tugraz.at/webgalleryBDR/data/batterie/index.htm
Rückfragen:
Dipl.-Ing. Dr.techn. Stefan Koller
Institut für Chemische Technologie von Materialien
Email: stefan.koller@tugraz.at
Tel: +43 (0) 316 873 8763
Mobil: +43 (0) 664 39 49 547
Batterieforscher bei der Arbeit: Stefan Koller vom Institut für Chemische Technologie von Materialie ...
TU Graz/Lunghammer
None
Batterieforscher im Porträt: Stefan Koller vom Institut für Chemische Technologie von Materialien de ...
TU Graz/Lunghammer
None
Merkmale dieser Pressemitteilung:
Chemie, Elektrotechnik, Energie
überregional
Forschungsergebnisse, Forschungsprojekte
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).