Auf dem Forschungscampus Garching wird in den kommenden Jahren das Centre for Advanced Laser Applications (CALA) errichtet. Hauptanliegen der universitären Forschung ist die Entwicklung von Verfahren zur grundlegenden Verbesserung der Heilungschancen von Krebspatienten. Dazu werden neuartige Röntgenstrahl-basierte, diagnostische und Teilchenstrahl-basierte, therapeutische Methoden in einer kompakten Quelle zusammengeführt. Die Quelle wird durch ultrakurze Laserpulse angetrieben. Die Max-Planck-Gesellschaft unterstützt das Projekt mit komplexer Lasertechnologie.
In den kommenden Jahren erhalten die Ludwig-Maximilians-Universität (LMU) und die Technische Universität München (TUM) auf dem Forschungscampus Garching b. München ein neues Centre for Advanced Laser Applications, kurz CALA. Dem Projekt hat nun der Wissenschaftsrat grünes Licht gegeben. Unterstützt wird CALA von der Max-Planck-Gesellschaft, die eines ihrer Lasersysteme zur Verfügung stellt.
Aufbauend auf den Ergebnissen, die im Exzellenzcluster "Munich-Centre for Advanced Photonics" (MAP) erzielt wurden, wird CALA die Schwerpunktsetzung der beiden Münchner Universitäten bezüglich innovativer Höchstleistungs-Lasertechnologie und deren Anwendung in der Biomedizin durch die Entwicklung laserbasierter brillanter Quellen von Röntgen- und Teilchenstrahlen intensivieren. Im Vordergrund stehen dabei die Erforschung neuartiger Verfahren zur biomedizinischen Bildgebung mit Röntgenstrahlen zur Krebs-Früherkennung und, darauf abgestimmt, die lokale Tumortherapie mit lasererzeugten Protonen- und Kohlenstoffionenstrahlen. Darüber hinaus ist die ultraschnelle Strahlenbiologie ein weiterer Forschungsschwerpunkt. Ziel ist ein besseres Verständnis der primären Prozesse bei der Therapie mit Ionenstrahlen und deren Optimierung.
Licht ist das Werkzeug des 21. Jahrhunderts. Schon heute gilt die Photonik als Schlüsseltechnologie mit zahlreichen vielversprechenden Perspektiven in technischen und medizinischen Bereichen. Das neue Centre for Advanced Laser Applications wird dazu beitragen, das enorme Potential des Lichts weiter auszuschöpfen.
CALA wird in zwei Abschnitten gebaut. Im ersten wird ein von der LMU finanzierter Forschungsbau mit 500 m² Nutzfläche am nördlichen Ende des Forschungscampus Garching bis 2011 errichtet. Der zweite Bauabschnitt beinhaltet eine Erweiterung auf dann insgesamt 2600 m². Diese Baumaßnahme soll Ende 2013 abgeschlossen sein. Die Kosten für die Erweiterung des Forschungsbaus und dessen Geräteausstattung belaufen sich auf 63 Mio Euro. Sie werden vom Bund und dem Land Bayern gemeinsam zu gleichen Teilen getragen.
Initiiert wurde das CALA-Projekt von Prof. Ferenc Krausz, Lehrstuhlinhaber für experimentelle Physik (Laserphysik) an der LMU und Direktor am Max-Planck Institut für Quantenoptik. Gemeinsam haben er und Prof. Franz Pfeiffer, Lehrstuhlinhaber für Angewandte Biophysik am Department für Physik der TUM, Prof. Michael Molls, Leiter der Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie am Klinikum rechts der Isar der TUM, und Prof. Maximilian Reiser, Direktor des Instituts für Klinische Radiologie am Klinikum der LMU, mit Unterstützung von zahlreichen Kollegen beider Münchner Universitäten, das Konzept für CALA erarbeitet. Prof. em. Klaus Witte wurde die Projektleitung übertragen.
Tumor-Erkennung mit lasergetriebenen Röntgenstrahlen
Die klassische Röntgenbildgebung stößt bei der Untersuchung von Weichteilgewebe, beispielsweise bei der Früherkennung der häufigsten Krebserkrankungen wie Brust-, Prostata- und Lungenkrebs physikalisch bedingt an ihre Grenzen. Neuartige Bildgebungsverfahren, die statt der Absorption des Röntgenlichts dessen Wellencharakter ausnutzen, liefern deutlich bessere Ergebnisse, insbesondere das Phasenkontrastverfahren, das ein beachtliches Potential für Dosisreduktion besitzt und das CALA intensiv erforschen wird (Spezialgebiet von Prof. Pfeiffer). Die Anforderungen an die Brillanz der Röntgenquelle werden bisher nur von Synchrotronquellen erfüllt, die jedoch wegen ihrer Größe und hohen Kosten nicht für klinische Anwendungen in Frage kommen. CALA strebt daher die Entwicklung kompakter Röntgenquellen ähnlicher Brillanz an, die auf verschiedenste Weise von moderner Hochleistungs-Lasertechnologie Gebrauch machen. Die konventionelle Erzeugung von Röntgenstrahlung beruht auf einem Zweistufenprozess, der erstens die Erzeugung und Beschleunigung von Elektronen und zweitens deren Nutzung zur Generierung von Röntgenstrahlen umfasst. Moderne Hochleistungslaser, wie sie in CALA entwickelt werden, bringen in beiden Schritten große Vorteile.
Zunächst wird CALA die Bright X-Ray Source (BRIX) verwirklichen. Die in einem konventionellen Linearbeschleuniger erzeugten und in einem Speicherring zirkulierenden Elektronenpulse werden an fokussierten Lichtpulsen in einem Überhöhungsresonator rückgestreut. Dabei entsteht gut gebündelte, schmalbandige Röntgenstrahlung im gewünschten Energiebereich, deren Brillanz die von herkömmlichen Quellen um mehr als zwei Größenordnungen übersteigt und für die Früherkennung und präzisen Abbildung von Kleinsttumoren geeignet ist. Auf diesem Gebiet haben LMU-Physiker hervorragende Expertise.
Alternativ können die Elektronenpulse auch durch Bestrahlung kleiner gasförmiger Wasserstofftargets mit nur wenigen Lichtzyklen langen Petawatt-Laserpulsen erzeugt werden. Die damit erzielbaren Elektronenenergien ermöglichen Röntgenpulse für zukünftige klinische Anwendungen in der Humandiagnostik.
Die lasererzeugten Elektronenpulse können auch in einer periodischen Permanent-Magnetfeldstruktur (Undulator) zur Erzeugung von Röntgenpulsen verwendet werden. Diese Röntgenpulse dauern nur wenige Femtosekunden, sie eignen sich für erste Experimente zur ultraschnellen Strahlenbiologie. Die Weiterentwicklung der Quelle zielt auf einen laserbasierten Röntgenlaser, dessen Pulse mit Hilfe von Teilchenpulsen molekulare Strahlenbiologie in Echtzeit ermöglicht.
Tumortherapie mit Teilchenstrahlen
Zur Strahlentherapie von Tumoren werden gegenwärtig überwiegend ultraharte Röntgenstrahlen eingesetzt. Seit einigen Jahren steigt das klinische Interesse, als Alternative zur Röntgenstrahlung hochenergetische Protonen und Kohlenstoffionen zu verwenden. Damit lassen sich wesentlich bessere Dosisverteilungen mit deutlich geringerem Risiko für Nebenwirkungen erreichen. Allerdings ist die nötige Beschleuniger- und Strahlführungstechnik vor allem bei Einsatz von Kohlenstoffionen sehr aufwändig, so dass schon allein aus Kostengründen die Teilchentherapie bisher nur an wenigen Zentren weltweit verfügbar ist.
Dies könnte sich durch den Einsatz laserbasierter Teilchenbeschleunigung ändern, die deutlich kompaktere Strahlungsquellen und Applikationssysteme verspricht. Der von CALA verfolgte Beschleunigungsmechanismus beruht auf dem enormen Lichtdruck, den ein scharf fokussierter, einige Lichtzyklen langer Petawatt-Puls auf eine Diamantfolie von nur wenigen Nanometer Dicke (eine Spezialität der LMU-Physik) ausübt und diese sehr effizient als quasineutrales Plasmapaket auf die gewünschte Energie beschleunigt. Durch magnetische Absonderung der Elektronen bleibt ein reiner Kohlenstoffionenstrahl übrig. Durch Anreicherung der Diamantfolie mit Wasserstoff können auch Protonenstrahlen erzeugt werden. Der wesentliche Unterschied zu konventionell erzeugten Teilchenstrahlen liegt in der hohen Gesamtzahl der Ionen pro Puls (1012 gegenüber 107 bis 1010) und der kurzen Pulsdauer (Femtosekunden gegenüber Sekunden). Der Strahltransport vom primären (Folie) zum sekundären Target (Patient) und insbesondere die Entwicklung eines kompakten 3D-Bestrahlungsapparates, ist eine weitere Aufgabe, die intensiver Bearbeitung bedarf.
CALA wird zunächst die Realisierbarkeit laserbasierter Teilchentherapie am Kleintiermodell erforschen. Das längerfristige Ziel ist die Übertragung der dabei entwickelten Methoden auf die Anforderungen der Humanmedizin.
Ein weltweit einzigartiges Forschungszentrum
Aufgrund des einzigartigen Spektrums an Röntgen- und Teilchenstrahlquellen wird CALA dem Ensemble an Exzellenzclustern im Münchener Raum, sowie der LMU und der TUM in den Bereichen Biochemie, Physik und Materialwissenschaften neue Forschungsfelder eröffnen. CALA wird darüber hinaus hochqualifizierte Arbeitsplätze schaffen und aufgrund seiner Alleinstellungsmerkmale mit weltweitem Zuspruch rechnen dürfen.
Kooperationspartner von CALA:
Ludwig-Maximilians-Universität, München (LMU)
Technische Universität, München (TUM)
Max-Planck-Institut für Quantenoptik (MPQ), Garching
Siemens Health Care, Erlangen
Pressekontakt:
Thorsten Naeser
Max-Planck-Institut für Quantenoptik, Garching,
Labor für Attosekundenphysik - LAP
(Professor Ferenc Krausz)
Tel: +49 89 32905-124,
Fax: +49 89 32905-649
E-Mail: Thorsten.naeser@mpq.mpg.de
http://www.munich-photonics.de - Homepage des Exzellenzclusters
Der Hochleistungslaser Lightwave Synthesizer liefert Laserblitze im Terawatt-Bereich. Das System wur ...
Foto: Thorsten Naeser
None
Der Hochleistungslaser Lightwave Synthesizer liefert Laserblitze im Terawatt-Bereich. Das System wur ...
Foto: Thorsten Naeser
None
Merkmale dieser Pressemitteilung:
Biologie, Chemie, Medizin, Physik / Astronomie
überregional
Forschungsprojekte, Organisatorisches
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).