idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.09.2010 13:58

Knobelspiel mit einem Quantenwürfel

Pascale Anja Dannenberg Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Hinter jedem Zufall steckt ein Plan, zumindest in der Welt der klassischen Physik: Im Prinzip lassen sich hier alle Geschehnisse berechnen, auch der Fall eines Würfels oder der Ausgang eines Roulette-Spiels. Ein Gerät, das mit echtem Zufall arbeitet, haben Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und des Max-Planck-Instituts für die Physik des Lichts konstruiert. Ihre Apparatur liefert zufällige Zahlen, die prinzipiell nicht vorhergesagt werden können, und zwar mit Hilfe der Quantenphysik.

    Die Forscher nutzen aus, dass quantenphysikalische Messungen ein spezielles Ergebnis nur mit einer gewissen Wahrscheinlichkeit, also zufällig, ergeben können. Echt zufällige Zahlen werden benötigt, um Daten sicher zu verschlüsseln oder zuverlässig ökonomische Prozesse und Klimaveränderungen zu simulieren. (Nature Photonics online Veröffentlichung, 29. August 2010)

    Was wir landläufig Zufall nennen, entspringt nur einem Mangel an Wissen: Wenn wir Ort, Geschwindigkeit und alle anderen klassischen Eigenschaften sämtlicher Teilchen im Universum absolut genau kennen würden, könnten wir fast alle Prozesse in der Welt unserer Alltagserfahrung vorhersagen. Selbst der Ausgang eines Knobelspiels oder die Lottozahlen ließen sich dann be rechnen. Schon gar nicht zufällig sind die Ergebnisse, die Computerprogramme liefern, auch wenn sie dafür gemacht sind: „Sie gaukeln Zufall nur vor, mit geeigneten Tests und einer ausreichenden Datenmenge lässt sich darin aber meist schon ein Muster erkennen“, sagt Christoph Marquardt. Eine Forschergruppe um Gerd Leuchs und Christoph Marquardt am Max-Planck-Institut für die Physik des Lichts und der Friedrich-Alexander-Universität Erlangen-Nürnberg sowie Ulrik Andersen von der Technischen Universität Dänemark hat dagegen einen Generator für echten Zufall entwickelt.

    Den gibt es nur in der Quantenwelt: Mit einer bestimmten Wahrscheinlichkeit hält sich ein Quantenteilchen mal an diesem Ort und mal an jenem auf, bewegt sich mal mit dieser Geschwindigkeit und mal mit jener. „Diese Zufälligkeit quantenmechanischer Prozesse nutzen wir aus, um Zufallszahlen zu produzieren“, sagt Christoph Marquardt.

    Als Quantenwürfel dienen den Wissenschaftlern Vakuumfluktuationen – eine weitere Eigenheit der Quantenwelt: Nichts gibt es hier nicht. Selbst in absoluter Dunkelheit ist die Energie eines halben Photons vorhanden, die zwar unsichtbar bleibt, aber in ausgeklügelten Messungen Spuren hinterlässt: das so genannte Quantenrauschen. Dieses völlig zufällige Rauschen entsteht dabei erst, wenn die Physiker hinsehen, also eine Messung vornehmen.

    Nützlich für die Sicherheitstechnik
    Das quantenmechanische Würfelspiel haben die Forscher natürlich nicht zum Zeitvertreib in ihren Kaffeepausen ausgetüftelt. „Echte Zufallszahlen sind schwer zu erzeugen, aber in vielen Bereichen gefragt“, sagt Gerd Leuchs, Direktor am Erlanger Max-Planck-Institut für die Physik des Lichts. Vor allem die Sicherheitstechnik braucht zufällige Zahlenkombinationen, um damit etwa den Transfer von Bankdaten zu verschlüsseln. Mit Zufallszahlen lassen sich aber auch komplexe Prozesse simulieren, deren Ausgang von Wahrscheinlichkeiten abhängt. So sagen Ökonomen mit solchen Monte-Carlo-Simulationen Entwicklungen auf Märkten voraus, und Meteorologen entwickeln damit Modelle von Wetter- und Klimaveränderungen.

    Dass die Erlanger Physiker die Zufallszahlen ausgerechnet mit den schwer greifbaren Vakuumfluktuationen auswürfeln und nicht mit einem der zahlreichen anderen zufälligen Quantenprozesse, hat einen triftigen Grund. Beobachten Physiker etwa die Geschwindigkeitsverteilung von Elektronen oder das Quantenrauschen eines Lasers, wird das zufällige Quantenrauschen meist von klassischem Rauschen überlagert. Das wiederum ist letztlich eben nicht zufällig. „Wenn wir das Quantenrauschen eines Laserstahls messen wollen, beobachten wir auch klassisches Rauschen, das zum Beispiel von einem wackelnden Spiegel stammt“, sagt Christoffer Wittmann, der an dem Experiment mitgearbeitet hat. Als Prozess der klassischen Physik lässt sich das Vibrieren des Spiegels prinzipiell berechnen und verdirbt das Würfelspiel.

    „Wir erhalten zwar auch einen Anteil klassischen Rauschens durch die Messelektronik“, sagt Wolfgang Mauerer, der dies im Experiment untersucht hat. „Wir kennen unser System aber sehr gut und können diesen Anteil sehr genau berechnen und entfernen.“ Quantenfluktuationen erlauben es den Physikern aber nicht nur, das reine Quantenrauschen zu belauschen, außer ihnen kann auch keiner mithören. „Die Vakuumfluktuationen liefern einzigartige Zufallszahlen“, sagt Christoph Marquardt. Bei anderen Quantenprozessen fällt dieser Nachweis schwerer und es besteht die Gefahr, dass ein Datenspion eine Kopie der Zahlen erhält. „Das wollen wir natürlich vermeiden, wenn es um Zufallszahlen für Datenschlüssel geht“, sagt Marquardt.

    Auch wenn der Quantenwürfel auf einige geisterhafte Phänomene der Quantenwelt setzt, die unserer Alltagserfahrung völlig widersprechen - besonders ausgeklügelte Geräte brauchen die Physiker nicht, um sie zu beobachten. Die technischen Komponenten ihres Zufallsgenerators gehören vielmehr zur Grundausstattung vieler Laserlabore. „Wir brauchen für den Aufbau weder einen besonders guten Laser noch besonders teure Detektoren“, erklärt Christian Gabriel. Das dürfte ein Grund mehr sein, warum sich bereits Unternehmen für die Technik interessieren, um sie kommerziell zu nutzen. Wer die Zufallszahlen selbst testen möchte, kann sie unter http://www.mpl.mpg.de/quantumbits herunterladen.

    Originalveröffentlichung:
    Christian Gabriel, Christoffer Wittmann, Denis Sych, Ruifang Dong, Wolfgang Mauerer, Ulrik L. Andersen, Christoph Marquardt und Gerd Leuchs:
    „A generator for unique quantum random numbers based on vacuum states“
    Nature Photonics, online Veröffentlichung, 29. August 2010, DOI:10.1038/NPHOTON.2010.197

    Weitere Informationen zum quantenmechanischen Zufallsgenerator:
    http://www.mpl.mpg.de/quantumbits

    Die Friedrich-Alexander-Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

    Weitere Informationen für die Medien:

    Dr. Christoph Marquardt
    Tel.: 09131/6877-129
    Christoph.Marquardt@physik.uni-erlangen.de

    Christian Gabriel
    Tel.: 09131/6877-120
    christian.gabriel@mpl.mpg.de


    Bilder

    Ein Spiel mit echtem Zufall: Die Forscher produzieren echte Zufallszahlen, indem sie die zufällig schwankende Intensität des Quantenrauschens sichtbar machen. Sie verwenden dazu einen starken Laser (von links kommend), einen Strahlteiler, zwei identische Detektoren und einige elektronische Komponenten. Die statistische Verteilung der Messwerte folgt einer Gauß’schen Glockenkurve (unten im Bild). Einzelne Messwerte werden Abschnitten der Glockenkurve zugeordnet, die jeweils einer Zahl entsprechen.
    Ein Spiel mit echtem Zufall: Die Forscher produzieren echte Zufallszahlen, indem sie die zufällig sc ...
    Bild: MPI für die Physik des Lichts
    None


    Merkmale dieser Pressemitteilung:
    Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Ein Spiel mit echtem Zufall: Die Forscher produzieren echte Zufallszahlen, indem sie die zufällig schwankende Intensität des Quantenrauschens sichtbar machen. Sie verwenden dazu einen starken Laser (von links kommend), einen Strahlteiler, zwei identische Detektoren und einige elektronische Komponenten. Die statistische Verteilung der Messwerte folgt einer Gauß’schen Glockenkurve (unten im Bild). Einzelne Messwerte werden Abschnitten der Glockenkurve zugeordnet, die jeweils einer Zahl entsprechen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).