idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.05.2012 02:01

Ötzi's blood detected

Julia Reichert Wissenschaftskommunikation
Europäische Akademie Bozen - European Academy Bozen/Bolzano

    5,000 year old red blood cells discovered. Oldest blood known to modern science.

    His DNA has been decoded; samples from his stomach and intestines have allowed us to reconstruct his very last meal. The circumstances of his violent death appear to have been explained. However, what had, at least thus far, eluded the scientists, was identifying any traces of blood in Ötzi, the 5,000 year old glacier mummy. Examination of his aorta had yielded no results. Yet recently, a team of scientists from Italy and Germany, using nanotechnology, succeeded in locating red blood cells in Ötzi’s wounds, thereby discovering the oldest traces of blood to have been found anywhere in the world.

    “Up to now there had been uncertainty about how long blood could survive – let alone what human blood cells from the Chalcolithic period, the Copper Stone Age, might look like.” This is how Albert Zink, Head of the Institute for Mummies and the Iceman at the European Academy, Bozen-Bolzano (EURAC) explains the starting point for the investigations which he undertook with Marek Janko and Robert Stark, materials scientists at the Center of Smart Interfaces at Darmstadt Technical University. Even in modern forensic medicine it has so far been almost impossible to determine how long a trace of blood had been present at a crime scene. Scientists Zink, Janko and Stark are convinced that the nanotechnological methods which they tested out on Ötzi’s blood to analyse the microstructure of blood cells and minute blood clots might possibly lead to a break-through in this area.
    The team of scientists used an atomic force microscope to investigate thin tissue sections from the wound where the arrow entered Ötzi’s back and from the laceration on his right hand. This nanotechnology instrument scans the surface of the tissue sections using a very fine probe. As the probe moves over the surface, sensors measure every tiny deflection of the probe, line by line and point by point, building up a three-dimensional image of the surface. What emerged was an image of red blood cells with the classic “doughnut shape”, exactly as we find them in healthy people today. “To be absolutely sure that we were not dealing with pollen, bacteria or even a negative imprint of a blood cell, but indeed with actual blood cells, we used a second analytical method, the so-called Raman spectroscopy method”, report Marek Janko and Robert Stark, who, with Albert Zink, are also members of the Center for NanoSciences in Munich. In Raman spectroscopy the tissue sample is illuminated by a laser beam and analysis of the spectrum of the scattered light allows one to identify various molecules. According to the scientists, the images derived from this process corresponded to present-day samples of human blood.
    Whilst examining the wound at the point where the arrow entered the body, the team of scientists also identified fibrin, a protein involved in the clotting of blood. “Because fibrin is present in fresh wounds and then degrades, the theory that Ötzi died straight after he had been injured by the arrow, as had once been mooted, and not some days after, can no longer be upheld,” explains Albert Zink.
    The team has just published the results of this research in the “Journal of the Royal Society Interface”.
    Please note that there is a press embargo until Tuesday 02 May 2012, 0:01 am UK time!


    Bilder

    AFM topography image of a red blood cell from the Icemans arrow wound at his back (rainbow colores).
    AFM topography image of a red blood cell from the Icemans arrow wound at his back (rainbow colores). ...
    Marek Janko
    None

    Three dimensional AFM image and spectroscopic scan of a blood clot found in the arrow wound at the Icemans back.
    Three dimensional AFM image and spectroscopic scan of a blood clot found in the arrow wound at the I ...
    Marek Janko
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Geschichte / Archäologie, Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    AFM topography image of a red blood cell from the Icemans arrow wound at his back (rainbow colores).


    Zum Download

    x

    Three dimensional AFM image and spectroscopic scan of a blood clot found in the arrow wound at the Icemans back.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).