The time a particle takes to tunnel through a barrier in quantum mechanics is obviously longer than many physicists assumed so far. Scientists at the Max Planck Institute for Nuclear Physics in Heidelberg showed evidence that tunnelling takes a very brief but finite and measureable time. This is the result of their theoretical study on an electron that tunnels out of an atom in an intense laser field while being accelerated up near to the speed of light.
A ball running uphill will not roll over the hill if it is not given enough velocity. On atomic scales that are ruled by the laws of quantum physics, however, a particle has a non-zero chance to get onto the opposite side of a barrier even though it is not allowed to get over according to classical physics. Physicists call this effect tunnelling because it seems as if the particle forms a tunnel to pass through the barrier.
A quantum tunnelling barrier may be build up in an atom or a hydrogen-like ion by the attractive Coulomb forces that attach the electron to the atomic core and the electric field of a strong laser that pulls the electron away from the core. Metaphorically speaking the ion's Coulomb potential and the laser's electric field form a hill (a so-called potential barrier) the electron may tunnel through to ionize. For highly charged hydrogen-like ions, i.e., an atomic core with a single electron, however, ultra-strong lasers with intensities of the order of 10^18 W/cm^2 and above are required to achieve measureable ionization probabilities. Such ultra-strong lasers can no longer be treated as pure electric fields, the laser's magnetic field component has to be taken into account, too. Magnetic fields, however, do not fit into the conventional picture of a tunnelling barrier. Therefore, it has been argued that the whole tunnelling concept may break down in the presence of magnetic fields. In Physical Review Letters, Klaiber and colleagues at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, have shown now that the notion of a tunnelling barrier can also be applied in the presence of magnetic fields of ultra-strong lasers via reshaping the potential barrier. A question that has caused many controversial discussions among physicists and remains unsolved till today is how long an electron needs to tunnel through a barrier.
Direct measurements of tunnelling times are hampered by experimental as well as conceptual difficulties. While extending the tunnelling picture into the regime of ultra-strong lasers, Klaiber and colleagues demonstrated that tunnel ionization of hydrogen-like ions via ultra-strong lasers features two time scales which may be measured indirectly. In particular, a small shift of the point of exit where the electron leaves the tunnelling barrier is caused by the presence of a magnetic field. This shift is proportional to the so-called Eisenbud-Wigner-Smith tunnelling time. Furthermore, the magnetic field changes the velocity distribution of the ionized electrons. Ionized electrons escape with a non-zero velocity along the propagation direction of the laser that is proportional to the so-called Keldysh tunnelling time. Thus, Max-Planck-physicists related these two tunnelling times to quantities that are accessible to direct measurements in laboratory experiments. For tunnel ionization of hydrogen-like ions with small atomic numbers lasers of moderate intensities and, therefore,
weak magnetic components are sufficient and the consequences of the two tunnelling time scales become small. This may explain why experimentalists have not been able so far to measure non-zero tunnelling times in tunnelling through high barriers. By increasing the laser's intensity the height of the tunnelling barrier decreases and the shape of the barrier changes qualitatively. First calculations have given hints that in this regime the tunnelling times become relevant again and may be determined experimentally.
Original publication:
Under-the-barrier dynamics in laser-induced relativistic tunneling
Michael Klaiber et al., Phys. Rev. Lett. 110, 153004 (2013)
doi:10.1103/PhysRevLett.110.153004
Contact:
Hon.-Prof. Dr. Christoph H. Keitel
Phone: (+49)6221 516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de
Dr. habil. Karen Z. Hatsagortsyan
Phone: (+49)6221 516-160
E-Mail: Karen.Hatsagortsyan@mpi-hd.mpg.de
http://link.aps.org/doi/10.1103/PhysRevLett.110.153004 Original publication
http://www.mpi-hd.mpg.de/keitel/ Division Keitel at MPIK
Fig. 1: Schematic description of tunnel ionization of highly charged ions at relativistic laser inte ...
None
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Fig. 1: Schematic description of tunnel ionization of highly charged ions at relativistic laser inte ...
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).