idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/19/2005 20:00

Multiple Sulfatasedefizienz: Atomare Struktur eines wichtigen Enzyms entschlüsselt

Marietta Fuhrmann-Koch Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Einen wichtigen Baustein im Verständnis der Multiplen Sulfatasedefizienz (MSD), einer seltenen und tödlich verlaufenden Erbkrankheit bei Kindern, haben Mediziner, Biochemiker und Biologen der Universität Göttingen entschlüsselt: Sie konnten die atomare Struktur eines Enzyms ermitteln, das die Sulfatasen in menschlichen Zellen aktiviert. Bei MSD kommt es zu einem Ausfall aller Sulfataseaktivitäten, der massive Funktionsstörungen zahlreicher Organe nach sich zieht. Die Suche nach Ursachen für das Fehlen aller Sulfatasen bei MSD-Patienten führte die Göttinger Forscher um den Biochemiker Prof. Dr. Kurt von Figura zunächst zu der Entdeckung, dass die Sulfatasen durch eine einzigartige neue Aminosäure mit dem Namen Formylglycin gekennzeichnet sind. Jetzt haben die Wissenschaftler das Enzym in seinen Strukturen aufgeklärt, das diese besondere Aminosäure produziert. Die nun bekannten Strukturen des so genannten Formylglycin-generierenden Enzyms erlauben Einblicke in die Ursachen der Multiplen Sulfatasedefizienz, die durch genetische Mutationen ausgelöst wird. Über die aktuellen Forschungsergebnisse berichtet die Fachzeitschrift CELL in ihrer Ausgabe vom 20. Mai 2005.

    S P E R R F R I S T: Donnerstag, 19. Mai 2005, 20 Uhr

    Multiple Sulfatasedefizienz: Atomare Struktur eines wichtigen Enzyms entschlüsselt
    Göttinger Wissenschaftler leisten einen weiteren Beitrag zum Verständnis der seltenen Erbkrankheit

    (pug) Einen wichtigen Baustein im Verständnis der Multiplen Sulfatasedefizienz (MSD), einer seltenen und tödlich verlaufenden Erbkrankheit bei Kindern, haben Mediziner, Biochemiker und Biologen der Universität Göttingen entschlüsselt: Sie konnten die atomare Struktur eines Enzyms ermitteln, das die Sulfatasen in menschlichen Zellen aktiviert. Bei MSD kommt es zu einem Ausfall aller Sulfataseaktivitäten, der massive Funktionsstörungen zahlreicher Organe nach sich zieht. Die Suche nach Ursachen für das Fehlen aller Sulfatasen bei MSD-Patienten führte die Göttinger Forscher um den Biochemiker Prof. Dr. Kurt von Figura zunächst zu der Entdeckung, dass die Sulfatasen durch eine einzigartige neue Aminosäure mit dem Namen Formylglycin gekennzeichnet sind. Jetzt haben die Wissenschaftler das Enzym in seinen Strukturen aufgeklärt, das diese besondere Aminosäure produziert. Die nun bekannten Strukturen des so genannten Formylglycin-generierenden Enzyms erlauben Einblicke in die Ursachen der Multiplen Sulfatasedefizienz, die durch genetische Mutationen ausgelöst wird. Über die aktuellen Forschungsergebnisse berichtet die Fachzeitschrift CELL in ihrer Ausgabe vom 20. Mai 2005.

    Bei den Sulfatasen handelt es sich um Enzyme, die Schwefelsäuregruppen bei einer Vielzahl von Molekülen abspalten. Fehlen diese Sulfatasen, werden die Entwicklung und die Funktion vieler Organsysteme, darunter auch das Nervensystem, gestört. Bereits vor zwei Jahren konnten die Biochemiker Prof. Dr. Thomas Dierks und Dr. Bernhard Schmidt das Gen isolieren, dessen Defekt den Ausfall der Sulfataseaktivitäten verursacht. Dieses Gen verschlüsselt eben jenes Formylglycin-generierende Enzym (FGE), das in den Sulfatasen die Aminosäure Formylglycin erzeugt. Diese einzigartige Aminosäure, die von den Göttinger Wissenschaftlern unter der Leitung von Prof. von Figura erstmals vor zehn Jahren nachgewiesen wurde, ist allein in Sulfatasen zu finden und tritt nirgendwo sonst in der Natur auf. Dabei ist das Formyglycin in den Sulfatasen an strategisch wichtiger Stelle angesiedelt: Die Aminosäure sitzt in dem Bereich, der für die Abspaltung von Schwefelsäuregruppen verantwortlich ist. "Damit kontrolliert das Formylglycin-generierende Enzym die Aktivitäten aller 16 Sulfatasen, die beim Menschen bekannt sind", erläutert Prof. Dierks. Allerdings gab die im Jahr 2003 ermittelte Gensequenz keinen Aufschluss über die tatsächliche Funktionsweise des FGE.

    Um das Enzym weiter erforschen zu können, haben die Göttinger Biochemiker das FGE in gentechnologischer Produktion in größerer Menge hergestellt. Daraus konnte der Strukturbiologe Dr. Markus Rudolph zusammen mit Dr. Achim Dickmanns Kristalle des Enzyms züchten. Diese Kristalle lieferten in sehr hoher Auflösung eine räumliche Struktur, die auf den ersten Blick sehr "unregelmäßig" erscheint. "So ungewöhnlich die Aminosäure Formylglycin ist, so außergewöhnlich ist auch die Struktur des Enzyms, das sie erzeugt", so Dr. Rudolph. Mit der Strukturanalyse erhielten die Wissenschaftler zugleich einen Einblick in die überraschende Funktion des Enzyms. "Das FGE benutzt molekularen Sauerstoff, den es auf eine erstaunlich einfache, bislang nicht für möglich gehaltene Weise in die Sulfatasen einbauen kann - ohne die Beteiligung von Metallen oder anderen kompliziert aufgebauten Faktoren", sagt der Wissenschaftler, der in der Abteilung für Molekulare Strukturbiologie eine von der Deutschen Forschungsgemeinschaft geförderte Forschernachwuchsgruppe leitet.

    Die Göttinger Forscher wollen nun an einer weiteren Aufklärung der Funktionsweise von FGE arbeiten. Das Enzym ist der erste funktionell charaktersierte Vertreter einer neuartigen, weitverbreiteten Proteinfamilie, die in ein- und vielzelligen Organismen von Bakterien bis zum Menschen nachweisbar ist. "So ist die Multiple Sulfatasedefizienz ein Beispiel dafür, wie durch die Suche nach den Ursachen einer seltenen Erkrankung das Verständnis der gesamten Biologie erweitert werden kann", betont Prof. von Figura. Das Formylglycin-generierende Enzym wird inzwischen in einem biotechnologischen Verfahren eingesetzt, um mehrere Sulfatasen effizient herzustellen und sie für die Therapie von einzelnen Sulfatasedefizienz-Erkrankungen zu nutzen.

    Kontaktadressen:

    Prof. Dr. Kurt von Figura
    Prof. Dr. Thomas Dierks
    Georg-August-Universität Göttingen
    Zentrum Biochemie und Molekulare Zellbiologie
    Abteilung Biochemie II
    Heinrich-Düker-Weg 12, 37073 Göttingen
    Telefon (0551) 39-5947, -19706, Fax (0551) 39-5979
    e-mail: kfigura@gwdg.de, tdierks@gwdg.de
    Internet: http://www.uni-bc.gwdg.de/bio_2/bio_2.htm

    Dr. Markus Rudolph
    Georg-August-Universität Göttingen
    Institut für Mikrobiologie und Genetik
    Abteilung für Molekulare Strukturbiologie
    Justus-von-Liebig-Weg 11, 37077 Göttingen
    Telefon (0551) 39-4079, Fax (0551) 39-4082
    e-mail: markus.rudolph@bio.uni-goettingen.de
    Internet: http://www.img.bio.uni-goettingen.de/ms-www/index.html


    Images

    Molekulare Basis der Multiplen Sulfatasedefizienz (MSD): Die Struktur des Formylglycin-generierenden Enzyms (FGE) ist als Bänderdiagramm in grau dargestellt. Krankheitsverursachende Mutationen, die bislang in MSD-Patienten gefunden wurden, sind als farbige Kugeln hervorgehoben. Die Farbe gibt an, ob die jeweilige Mutation zur Destabilisierung der Struktur (rosa), zur Hemmung der Sulfatase-Bindung (blau) oder zur Blockierung der Enzymaktivität (türkis) führt.
    Molekulare Basis der Multiplen Sulfatasedefizienz (MSD): Die Struktur des Formylglycin-generierenden ...

    None


    Criteria of this press release:
    Biology, Chemistry, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    German


     

    Molekulare Basis der Multiplen Sulfatasedefizienz (MSD): Die Struktur des Formylglycin-generierenden Enzyms (FGE) ist als Bänderdiagramm in grau dargestellt. Krankheitsverursachende Mutationen, die bislang in MSD-Patienten gefunden wurden, sind als farbige Kugeln hervorgehoben. Die Farbe gibt an, ob die jeweilige Mutation zur Destabilisierung der Struktur (rosa), zur Hemmung der Sulfatase-Bindung (blau) oder zur Blockierung der Enzymaktivität (türkis) führt.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).