idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/23/2005 11:46

NEST-"Wärme" für TU-Forschergruppe

Mag. Karin Peter PR und Marketing
Technische Universität Wien

    Wien (TU) Peter Schattschneider und Cécile Hébert, beide Physiker an der Technischen Universität Wien, haben kürzlich ihre Kollegen mit der Behauptung überrascht, dass Zirkulardichroismus in einem handelsüblichen Transmissionselektronenmikroskop beobachtet werden kann. Bisher hatte man angenommen, dass das - wenn überhaupt - nur mit einem Strahl spinpolarisierter Elektronen möglich ist. Für die Praxis bedeutet diese Forschungssensation, dass ein neuer Weg zur Darstellung magnetischer Strukturen von Oberflächen und dünnen Schichten im Nanometerbereich beschritten werden kann. Noch dazu im Vergleich zu herkömmlichen Methoden wesentlich kostengünstiger.

    Die Ausgangslage

    X-Ray Magnetic Circular Dichroism (XMCD) ist eine in den 80er-Jahren entwickelte Methode zur Untersuchung magnetischer Eigenschaften. Dabei wird ein zirkular polarisierter Röntgenstrahl in dem untersuchten Material entsprechend der Richtung des Magnetfeldes unterschiedlich absorbiert. Das XMCD-Verfahren hat aber zwei schwerwiegende Nachteile: die Auflösung ist für die Analyse moderner nanostrukturierter Bauteile nicht gut genug, und man braucht ein Synchrotron - eine großtechnische Anlage, von denen es weltweit nur sehr wenige gibt.

    Auswege dank Energy Loss Magnetic Chiral Dichroism im EU-NEST-Programm

    Peter Schattschneider und Cécile Hébert, beide am Institut für Festkörperphysik der TU Wien, waren davon überzeugt, dass man den gleichen Effekt auch mit einem Transmissionselektronenmikroskop (TEM) erzielen kann. Sie werden diese neue Methode im Projekt CHIRALTEM untersuchen. Das ist ein in der Projektschiene "Neue und sich abzeichnende wissenschaftliche und technologische Entwicklungen" (NEST) laufendes "high-risk"-Forschungsprojekt im 6. EU-Rahmenprogramm.

    Ziel der EU-NEST-Förderung ist die unkonventionelle und visionäre Forschung, die der europäischen Wissenschaft und Technologie den Zugang zu den Forschungsfeldern von morgen eröffnet. Darüber hinaus sollen Forschungsvorhaben unterstützt werden, die sich mit bisher unbekannten oder neuartigen Risikopotenzialen und Gefahren für die Gesellschaft befassen. Projekte sollen gewagt sein, daher "high risk", das Forschungsziel nicht zu erreichen. NEST ist auf Flexibilität ausgelegt. Interdisziplinäre Forschungsvorhaben sind daher besonders willkommen.

    "Know-how gepaart mit Intuition, und das mit einfachen Mitteln", so die Antwort Schattschneiders auf die Frage, wie es zum Durchbruch kam. "Wir hatten die Umsetzung der Forschungsidee im Kopf. Eine kurze Rechnung zeigte, dass es möglich sein sollte, aber das Experiment konnten wir noch nicht durchführen".

    Gute Voraussetzungen also für die Akzeptanz als EU-NEST-Projekt - eine originelle Idee und eine riskante Umsetzung. Die EU-Statistik zeigt außerdem ein weiteres Risikopotential in der Antragsphase: die Erfolgsquote bewilligter Projekte lag im ersten NEST-call bei 6 Prozent (!).

    10 Mal kleinere magnetische Strukturen werden erkennbar sein

    Ist das neue Verfahren, das von seinen Wiener Entdeckern "Energy Loss Magnetic Chiral Dichroism (EMCD)" getauft wurde, erfolgreich, werden sich 10 Mal kleinere magnetische Strukturen erkennen lassen, als das mit den derzeit besten Röntgenstrahl-Verfahren möglich ist. Aufgrund ihrer technologischen Beschaffenheit - mit Transmissionselektronenmikroskopen (TEM) können bis zu 100 Nanometer "dicke" Materialien mit atomarer Auflösung untersucht werden - eignet sich die Methode vor allem für die Analyse magnetischer Filme. Ist das Know-How für den experimentellen Aufbau einmal vorhanden, können neben den magnetischen auch die morphologischen, kristallographischen und chemischen Eigenschaften einer Probe im Transmissionselektronenmikroskop gewissermaßen in einem Durchgang untersucht werden.

    Nach 10 Monaten erfolgreich

    Für manche WissenschafterInnen erstaunlich, ist es dem Forscherteam bereits nach 10 Monaten gelungen, ihre Voraussage experimentell nachzuweisen. Dadurch eröffnen sich weitere Forschungsperspektiven in der Nanotechnologie, insbesondere im Zusammenhang mit "Spintronics". Das ist jene sehr junge Technologie, die sich sowohl die magnetischen Eigenschaften von Elektronen ("Spin") als auch ihre elektrischen Ladungen zunutze macht. Diese Technologie wird bereits in Schreib- und Leseköpfen von Magnetplatten eingesetzt, und sie wird in den nächsten Jahren voraussichtlich eine Schlüsselrolle in der Sensorik, Telekommunikation und Informationsverarbeitung spielen.
    Auch in der Biologie und Biotechnologie könnte die neue Methode wichtige Impulse liefern, z. B. bei der Untersuchung magnetotaktischer Bakterien oder bei der Klärung offener Fragen beim magnetischen "Kompass"-Gefühl der Tauben.

    Gemeinsam zum Ziel

    Die erste Aufgabe des EU-Projekts CHIRALTEM (Chiral dichroism in the transmission electron microscope) - Laufzeit 36 Monate, Start war im Juli 2004, Projektvolumen Euro 890.000,- bestand darin, Zirkulardichroismus im TEM experimentell nachzuweisen. Die Wiener Gruppe verwendete dazu einfache ferromagnetische Materialien (Eisen und Nickel). Nachdem der Nachweis des Effekts gelungen ist, wird jetzt getestet, wie das Experiment optimiert werden kann. Danach ist geplant, hartmagnetische Materialien und nanostrukturierte Bauteile, wie sie für "Spinvalves" verwendet werden, zu untersuchen.

    Die Forschergruppe in Regensburg erforscht zeitgleich, wie man die Materialproben vorbereiten und die Magnetfelder im Mikroskop kontrollieren kann, während das Team in Prag vergleichende Computersimulationen durchführt. Die Gruppe in Dresden studiert einen alternativen experimentellen Aufbau, der möglicherweise Vorteile bietet.

    Die Kollegen in Triest haben inzwischen Experimente am Synchrotron durchgeführt, um beide Methoden miteinander vergleichen zu können. Durch die Kombination zweier Techniken erwartet sich das Team einen enormen Synergieeffekt. Eines der Projektziele ist es dann auch, den wissenschaftlichen Kontakt zwischen zwei bisher nur schwach kommunizierenden Forschungsrichtungen - Elektronenmikroskopie und Synchrotron - zu verstärken.

    Rückfragehinweis:
    Univ.Prof. Dipl.-Ing. Dr. Mag. Peter Schattschneider
    Institut für Festkörperphysik
    Technische Universität Wien
    Wiedner Hptstr. 8-10, A-1040 Wien
    Tel.: +43-1-58801x13722
    Fax: +43-1-58801-13798
    E-Mail schattschneider@ifp.tuwien.ac.at


    More information:

    http://www.chiraltem.physics.at/


    Images

    Transmissionselektronenmikroskop TECNAI F20 S-Twin an der Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM)  der TU Wien. Seine Punktauflösung beträgt 0,24 Nanometer. Zahlreiche Abbildungs- und Analysemöglichkeiten sind damit möglich.
    Transmissionselektronenmikroskop TECNAI F20 S-Twin an der Service-Einrichtung für Transmissions-Ele ...
    Foto: TU Wien
    None


    Criteria of this press release:
    Mathematics, Physics / astronomy
    transregional, national
    Research projects
    German


     

    Transmissionselektronenmikroskop TECNAI F20 S-Twin an der Service-Einrichtung für Transmissions-Elektronenmikroskopie (USTEM) der TU Wien. Seine Punktauflösung beträgt 0,24 Nanometer. Zahlreiche Abbildungs- und Analysemöglichkeiten sind damit möglich.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).