idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/18/2005 11:00

Berechenbare Wolframdrähte

Dr. Johannes Ehrlenspiel Kommunikation
Fraunhofer-Gesellschaft

    Kauft man eine Glühbirne, weiß man nie, wie lange sie brennen wird. Die variierende Lebensdauer wird vor allem von Mikrorissen im Wolframdraht begrenzt. Die Rissbildung vor und nach dem Ziehprozess beschreibt ein Simulationsmodell für Werkstoffe.

    Glühbirnen leben im Dauerbetrieb idealerweise 42 Tage - wenn es nach deren Hersteller ginge. Doch in der Realität sieht es finsterer aus: Manche Birnen brennen erst nach Jahren durch, andere bereits nach ein paar Tagen. Eine einheitlichere Produktqualität vereiteln unter anderem feine Risse im Wolframdraht, die schließlich seinen Bruch verursachen. Mit diesem Problem kämpfen auch die beiden weltweit größten Glühlampenhersteller Osram und Philips. Bisher arbeitete man in der Branche mit Versuch und Irrtum, um das Ziehverfahren für den Draht zu verbessern. Mit der Simulation des Materialverhaltens soll die Produktion gezielter als bisher nachgebessert werden. Den Rissen und nachfolgenden Schwierigkeiten beim Wendeln sind die Hersteller gemeinsam mit Forschern vom Fraunhofer-Institut für Werkstoffmechanik IWM auf der Spur. "Wenn wir die Beschaffenheit und das Verhalten des Drahtes erst einmal kennen, können wir die Produktion optimieren und standardisieren." Davon geht Bernd Eberhard, Projektleiter bei Osram, aus.

    Mit 40 Mikrometern ist der Wolframfaden je nach Lampentyp im Mittel nur etwa halb so dünn wie ein menschliches Haar. Bis der Draht diesen Durchmesser erreicht hat, muss er in mehreren Schritten dünn und lang gezogen werden. Je nach Anzahl kann er dabei wenige oder viele Längsrisse bekommen. Solche Splits bilden sich vor allem während der ersten Ziehstufen, also beim Verjüngen von knapp vier Millimetern auf 0,3. Die feinen Risse verlängern sich, wenn der Draht weiter auf bis zu fünf Mikrometer Durchmesser gezogen wird. Der Grund dafür ist die Spannung, die nach dem Ziehen im Draht bestehen bleibt, wie Fraunhofer-Projektleiter Holger Brehm und seine Mitarbeiter herausgefunden haben. "Das Verhalten des Drahts und der Risse während des Ziehprozesses und danach rechnerisch zu beschreiben, ist uns bereits gelungen. Zum ersten Mal kann der Wolframdraht während des gesamten Verjüngens am Bildschirm beobachtet werden."

    Die Rissbildung wird weiter untersucht und andere dafür maßgebliche Faktoren in das Modell eingearbeitet. Ein wesentlicher ist etwa die Reibung zwischen Draht und Ziehstein. Ist sie hoch, erwärmt sich das Metall stärker. Daher integrieren die Forscher zurzeit die Temperaturveränderung während und nach dem Ziehen in die Simulation. "Der gezogene Draht kühlt sich an der Oberfläche schneller ab als in seinem Inneren", fasst Brehm die neusten experimentellen Resultate zusammen. "Auch bei diesem Prozess können leider Splits entstehen."

    Ansprechpartner:
    Dr. Holger Brehm
    Telefon: 07 61 / 51 42-3 35, Fax: -1 10
    holger.brehm@iwm.fraunhofer.de

    Manel Rodriguez Ripoll
    Telefon: 07 61 / 51 42-2 76
    manel.rodriguez.ripoll@iwm.fraunhofer.de

    Prof. Dr. Hermann Riedel
    Telefon: 07 61 / 51 42-1 03
    hermann.riedel@iwm.fraunhofer.de


    More information:

    http://www.iwm.fraunhofer.de/pdf/presse/iwm_report1_05.pdf - IWM-Nachrichten, S.3


    Images



    © Fraunhofer IWM
    None

    In der Simulation mit finiten Elementen wird deutlich, wie sich im Wolframdraht ein Riss bildet und wandert.
    In der Simulation mit finiten Elementen wird deutlich, wie sich im Wolframdraht ein Riss bildet und ...
    © Fraunhofer IWM
    None


    Criteria of this press release:
    Information technology, Materials sciences
    transregional, national
    Research projects
    German


     


    For download

    x

    In der Simulation mit finiten Elementen wird deutlich, wie sich im Wolframdraht ein Riss bildet und wandert.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).