Halbleiterdioden aus dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin könnten Quecksilberdampflampen ersetzen. Die Doden sind robuster, weitaus langlebiger und vom Material her unschädlich - anders als die giftigen Quecksilberdampflampen. Ein Einsatzgebiet ist beispielsweise die Wasserdesinfektion per UV-Licht.
Ultraviolettes Licht kann tödlich sein. Das Bombardement der kurzwelligen und energiereichen Strahlung ruft nicht nur gefährlichen Sonnenbrand hervor und lässt Hautzellen zu Tumoren entarten, sondern es tötet auch unerwünschte Krankheitserreger ab. Daher nutzen Mediziner und Wissenschaftler seit langem Quecksilberdampflampen, die UV-Licht abstrahlen, um Geräte und Wasser keimfrei zu machen. Nur: Quecksilber ist hochgiftig, und solche Lampen haben eine Lebensdauer, die in etwa der einer herkömmlichen Glühbirne entspricht: einige Tausend Stunden. Leuchtdioden dagegen sind vom Material her unschädlich und halten zehn- bis hunderttausend Stunden durch. Außerdem sind sie viel kompakter als die Quecksilberdampflampen. Michael Kneissl, seit wenigen Monaten am Ferdinand-Braun-Institut für Höchstfrequenztechnik, arbeitet an solchen Dioden aus Halbleiterkristallen. Zugleich erforscht er als Professor an der Technischen Universität Berlin die Grundlagen dieser Lichtquellen.
Blaue Leuchtdioden galten bis vor rund zehn Jahren als Ding der Unmöglichkeit. Es gelang den Forschern und Ingenieuren einfach nicht, entsprechende Halbleiterkristalle herzustellen. Die Forschung daran wurde mit Hochdruck betrieben, denn wer blaues Licht aus Dioden erzeugen konnte, der hatte den Schlüssel zum blauen Laser und zu weißem Licht aus Dioden. Beides ist enorm gewinnträchtig. Diodenlampen (Stichwort: "solid-state lighting") werden auf lange Sicht wohl die herkömmlichen Glasbirnen mit den Wolframdrähten ersetzen, denn die Glühlampen verwandeln nur einen Bruchteil der Energie in Licht, der Rest geht als Hitze verloren.
Der Weltmarkt für Leuchtdioden insgesamt wird für Ende 2007 auf acht Milliarden USDollar geschätzt, das wirtschaftliche Potenzial der blauen Laser auf 1,4 Milliarden. Die Laser beruhen auf dem selben Prinzip wie Leuchtdioden, nur dass die Lichtstrahlen beim Laser alle in eine Richtung gehen. Mit blauem Laserlicht lassen sich weitaus kleinere Strukturen auf lichtempfindlichem Material schreiben als mit dem langwelligeren roten oder infraroten Licht - DVDs und weitere Datenträger können viel dichter als bisher beschrieben werden.
Und dann gibt es das "noch blauere" Licht: die UV-Strahlen, die Wasser desinfizieren. "Schon jetzt sind kompakte und robuste Reinigungsgeräte realisierbar, die bei einer Leistungsaufnahme von 10 Watt drei bis vier Liter Wasser pro Sekunde desinfizieren", sagt Kneissl. Er beschreibt eine mögliche Anordnung: Hundert Leuchtdioden, die jeweils mit 0,1 Watt strahlen, könnten ringförmig um ein durchsichtiges Stück Wasserleitung angeordnet werden. Öffnet nun jemand den Hahn, so schalten sich automatisch die Dioden an und bestrahlen mit ihrem UV-Licht das durchströmende Wasser. Es kommt keimfrei aus der Leitung. "Denken Sie an Züge oder Flugzeuge", sagt Kneissl. "Oder an Länder in heißen Regionen mit schlechter Wasseraufbereitung. Oder an wissenschaftliche Labore und Krankenhäuser, die Reinstwasser brauchen. Ein enormes Marktpotenzial!"
Ermöglicht hat all das der Durchbruch von japanischen Wissenschaftlern. Ihnen war es gelungen, Galliumnitrid (GaN) so abzuscheiden und gezielt zu "verunreinigen" (dotieren), dass es blaues Licht aussendet. GaN zählt heute, neben dem allgegenwärtigen Silizium, zu einem der wichtigsten Halbleitermaterialien in der Elektronikindustrie.
Bis es soweit war, mussten erst geeignete Substrate und Verarbeitungsmöglichkeiten für GaN gefunden werden. All das ist kein Problem mehr: "Sie können heute schon weiße und blaue Leuchtdioden kaufen", sagt Kneissl. Jetzt geht es darum, die Grenzen weiter zu verschieben in Richtung noch kurzwelligerer Strahlung. Von Blau zu Ultraviolett eben.
Wo liegen die Schwierigkeiten? "Zum einen in der richtigen Dotierung der Halbleiter, zum anderen im Wachstum", sagt Kneissl. Die Kristalle für Laser und Dioden entstehen in einem Verfahren, das Experten als "Metallorganische Gasphasenepitaxie" bezeichnen, kurz MOVPE (Metalorganic Vapor Phase Epitaxy). Ausgangsstoffe sind beispielsweise metallorganische Verbindungen wie Trimethylgallium und Ammoniak (als Stickstoffquelle). Diese Gase werden über das heiße Substrat (etwa Saphir) geleitet, wo sie sich dann thermisch zersetzen und als GaN abscheiden. So wachsen hauchdünne Schichten, nur wenige Atom lagen übereinander. Galliumnitrid ist tückisch: Es wächst sozusagen nur ungern gleichmäßig und bildet schnell Defekte; Störungen im Kristallgitter, die zu einer drastischen Reduzierung der Lichtemission und Effizienz führen. Kneissl: "Der Trick ist es nun, Epitaxieverfahren zu entwickeln, die es gestatten hochqualitative kristalline Schichten abzuscheiden."
Es reicht jedoch nicht, richtig dotierte GaN-Schichten wachsen zu lassen. "Wir machen uns zuvor schon Gedanken um das Design der Bauelemente", erläutert Michael Kneissl. "Da geht es darum, winzigste Strukturen zu erzeugen, die von Barrieren und weiteren Schichten umgeben sind." Diese Strukturen heißen Quantentöpfe und sind nur drei bis vier Nanometer klein. Ein Nanometer ist ein Milliardstel Meter, ein menschliches Haar ist 50.000 Nanometer dick (0,05 Millimeter). Beim Design der Bauteile helfen Computerprogramme.
Nur: "Das Material, mit dem wir arbeiten, ist noch relativ neu, viele seiner Eigenschaften sind gar nicht oder nur ungenau bekannt", sagt Kneissl. Das hat die fatale Folge, dass die Simulationen auf dem Computer ebenfalls große Ungenauigkeiten aufweisen, denn die Programme arbeiten mit den physikalischen und chemischen Eigenschaften der Materialien. Daher ist Kneissl nicht nur an der anwendungsorientierten Forschung interessiert, sondern auch an den Grundlagen. "Mit meinen beiden Arbeitsgruppen kann ich das hervorragend verzahnen", sagt der Forscher. Eine davon forscht am FBH, die andere an der TU.
Weitere Informationen
Ferdinand-Braun-Institut für Höchstfrequenztechnik / TU Berlin
Prof. Dr. Michael Kneissl
Tel.: 030 / 3 14-2 25 63
Mail: michael.kneissl@fbh-berlin.de
Web: www.fbh-berlin.de
www.physik.tu-berlin.de/institute/IFFP/kneissl/
"Für mich ein ideales Umfeld": Das sagt Michael Kneissl (r.), Professor an der Technischen Universit ...
Foto: Zens/FVB
None
Criteria of this press release:
Electrical engineering, Energy, Information technology, Mathematics, Mechanical engineering, Physics / astronomy
transregional, national
Research projects, Research results
German
"Für mich ein ideales Umfeld": Das sagt Michael Kneissl (r.), Professor an der Technischen Universit ...
Foto: Zens/FVB
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).