idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/18/2006 10:06

Bacteria-based nanoclusters

Dr. Christine Bohnet Kommunikation und Medien
Forschungszentrum Dresden-Rossendorf

    Scientists from the research center Forschungszentrum Rossendorf use the survival mechanism of special bacteria to produce solid nanoclusters out of palladium. The tiny bullets, only a few billions of millimeters in size, show new properties, i.e. enhanced catalytic activity. Thus, bacteria-based nanoclusters seem to be ideally suited for building new nano-catalysts.

    Experts regard nanotechnology as the key technology of the 21 century. The tiny particles - one nanometer is a billion of a millimeter large - are used already in industrial applications such as optics or electronics or i.e. in the car industry. Nature has invented its own mechanisms on the nanometer scale. Basic knowledge about these natural processes can contribute to the development of new nano-materials.

    To produce nanoparticles out of the noble metal palladium a team of biologists from the Forschungszentrum Rossendorf (FZR) in Dresden use the surface protein layer (S-layer) of one bacterium. Through this layer the bacterium "Bacillus sphaericus JG-A12" is able to survive in the extreme environment of a uranium mining waste pile. The biologists discovered this bacterium in 1997 and have since been able to cultivate it in the laboratory of the FZR. Its S-layer is very regularly structured with pores of identical size on the nanometer scale. On this grid-like matrix the biologists applied a metallic salt of palladium ions to investigate the metal-protein interactions and their impact on the secondary structure.

    Within the pores of the S-layer the metallic salt is transformed into the noble metal palladium by the use of hydrogen. The result are nanoclusters of metallic palladium, each comprising of 50 to 80 atoms, which are regularly arranged on the surface layer. This combined metal-protein layer shows new physical and chemical effects. Because the metal stabilizes the protein and vice versus the S-layer stays stable to higher temperatures or even in an acidic environment. In relation to their size the nanoclusters possess many atoms on the surface where other substances can bind. Today, the noble metal palladium is often used as a catalyst, i.e. in the chemical industry or in cars. Nano-catalysts made from palladium promise to accelerate chemical reactions even at low temperatures. A few laboratories are already producing and testing this new technology.

    Scientists of the FZR, however, have taken a step further. They are aiming at producing innovative nano-catalysts out of a noble metal like gold or to model the size of the metallic nanoclusters. This could lead to more efficient nano-catalysts or to completely new fields of application. For the first time they exactly characterized the bonding between the metal and the S-layer protein of "Bacillus sphaericus JG-A12". Hereby, the prerequisite is given to manipulate this protein by means of genetic engineering enabling the scientists to construct materials with new optic, magnetic, catalytic, and other novel physical properties.

    The team consists of the biologists Dr. Katrin Pollmann, Dr. Mohamed Merroun, Dr. Johannes Raff, Dr. Sonja Selenska-Pobell and the biophysicist Dr. habil. Karim Fahmy. Through various methodological approaches they decoded the mechanism, where and how the bacteria bonds noble metals on its protective surface layer. Karim Fahmy used infrared spectroscopy to characterize the nature of the chemical groups responsible for the stable metal-protein interaction. Given this as a basis, and after already having deciphered the structure of the S-layer, Johannes Raff was able to determine the building blocks of the S-layer protein which take part in the bonding of the metal. Mohamed Merroun and Dr. Christoph Hennig, another team member, helped to clear the atomic environment of the palladium within the biological matrix by means of X-rays of the Rossendorf Beamline at the European Synchrotron (ESRF) in Grenoble/France.

    The scientific results were published in the latest issue of the Biophysical Journal (http://www.biophysj.org/) by Karim Fahmy, Mohamed Merroun, Katrin Pollmann, Johannes Raff, Olesya Savchuk, Christoph Hennig, Sonja Selenska-Pobell: "Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy". The most purposeful integration of complementary research methods from biology, chemistry, and physics were important for the success of the research undertaken. All in all, onlExperts regard nanotechnology as the key technology of the 21 century. The tiny particles - one nanometer is a billion of a millimeter large - are used already in industrial applications such as optics or electronics or i.e. in the car industry. Nature has invented its own mechanisms on the nanometer scale. Basic knowledge about these natural processes can contribute to the development of new nano-materials.

    Further information:
    Dr. Sonja Selenska-Pobell, Dr. Johannes Raff, Dr. Katrin Pollmann
    Institute of Radiochemistry
    Phone.: 0351 260 - 2989 oder - 2951 oder - 2946
    s.selenska-pobell@fz-rossendorf.de, j.raff@fz-rossendorf.de, k.pollmann@fz-rossendorf.de

    Dr. Karim Fahmy
    Institute of Radiation Physics
    Please ask Dr. Christine Bohnet for the telephone number as Dr. Fahmy is on holiday leave right now.

    Contact for the media:
    Dr. Christine Bohnet - Public Relations
    Forschungszentrum Rossendorf <FZR>
    Phone.: +49 351 260 - 2450 oder + 49 160 969 288 56
    Fax: + 40 351 260 - 2700
    c.bohnet@fz-rossendorf.de
    Postfach 51 01 19, 01314 Dresden/Germany
    Visitors' address: Bautzner Landstraße 128 ? 01328 Dresden/ Germany


    More information:

    http://www.fz-rossendorf.de
    http://www.biophysj.org/cgi/content/abstract/91/3/996


    Images

    3 D-scheme of the matrix of nanoclusters made from palladium
    3 D-scheme of the matrix of nanoclusters made from palladium

    None


    Criteria of this press release:
    Biology, Chemistry, Information technology, Mathematics, Physics / astronomy
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    3 D-scheme of the matrix of nanoclusters made from palladium


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).