idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/01/2006 14:45

Mutation Causes Heart Muscle Disorder - Researchers in Berlin und Boston Detect Genetic Defect

Barbara Bachtler Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

    A mutation in a gene responsible for the adhesion of adjacent cells of the heart is the cause of a potentially lethal heart muscle disorder. The evidence has been provided by a team of researchers including Dr. Arnd Heuser of the Max Delbrück Center of Molecular Medicine (MDC) Berlin-Buch, Germany, Dr. Eva R. Plovie of the Massachusetts General Hospital (MGH) in Boston, USA, and Professor Ludwig Thierfelder (MDC and Helios Klinikum Berlin/Charité) and Dr. Brenda Gerull (MDC). The scientists searched selectively mutations in the gene Desmocollin-2 (DSC2) in a pool of 88 unrelated patients suffering from arrhythmogenic right ventricular cardiomyopathy (ARVC) and discovered a mutation that causes this cardiomyopathy. By switching off the gene in zebrafish embryos, they demonstrated that DSC2 is essential for normal mycardial structure and function. Their work has now been published in the American Journal of Human Genetics (Vol. 79, pp. 1081-1088, 2006).*

    Heart-muscle disorders (cardiomyopathies) are prevalent worldwide but their origins are widely unknown. During the course of the arrhythmogenic right ventricular cardiomyopathy (ARVC), ?brofatty and connective tissue replacement takes place in the right ventricular myocardium. This leads to a dysfunction of the heart-muscle which can result in arrhythmia and cardiac insufficiency. The consequence is an increased risk of sudden cardiac death, even in young people.

    The heart of an adult beats about seventy-times in a minute or around 100,000 times a day. It is, therefore, exposed to high mechanical strains. Desmosomes are mechanical structures that keep the cells bound together as if connected with push buttons so that they will not rip while beating.

    In collaboration with researchers from the University Hospital of Münster, Dr. Heuser (MDC) and Dr. Plovie (MGH) searched for genetic defects in the desmosomes within a pool of 88 unrelated patients. They searched for a mutation in the gene that carries the information for the protein Desmocollin-2 (DSC2) which is part of the desmosome structure. Mutations of other desmosomal proteins have previously been detected for ARVC. Therefore, the Berlin- and Boston-based researchers assumed that mutations in DSC2 could result in ARVC, too.

    Dr. Heuser and Dr. Plovie could now demonstrate that the mutation in DSC2 gene results in a reduced DSC2 protein which causes ARVC. Furthermore, the switch off of the DSC2 in zebrafish embryos showed that DSC2 is necessary for normal embryonic cardiac development. In an adult organism, a lack of DSC2 leads to disordered heart contraction and difficulties in the conduction system of the heart.

    * Mutant Desmocollin-2 Causes Arrhythmogenic Right Ventricular Cardiomyopathy
    Arnd Heuser,* Eva R. Plovie,* Patrick T. Ellinor, Katja S. Grossmann, Jordan T. Shin, Thomas Wichter, Craig T. Basson, Bruce B. Lerman, Sabine Sasse-Klaassen, Ludwig Thierfelder, Calum A. MacRae, and Brenda Gerull

    From the Max Delbrueck Center for Molecular Medicine (A.H.; K.S.G.; S.S.-K.; L.T.; B.G.) and Department of Clinical and Molecular Cardiology, Franz Volhard Clinic, HELIOS Clinics GmbH, Charité, Humboldt University (A.H.; L.T.; B.G.), Berlin; Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Boston (E.R.P.; P.T.E.; J.T.S.; C.A.M.); Department of Cardiology and Angiology, University Hospital of Muenster (T.W.), and Institute for Arteriosclerosis Research at the University of Muenster (T.W.), Muenster, Germany; and Greenberg Cardiology Division, Department of Medicine, Weill Medical College of Cornell University, New York (C.T.B.; B.B.L.)
    Address for correspondence and reprints: Dr. Brenda Gerull, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13092 Berlin, Germany. E-mail: b.gerull@mdc-berlin.de
    * These two authors contributed equally to this work.

    Barbara Bachtler
    Press and Public Affairs
    Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
    Robert-Rössle-Straße 10; 13125 Berlin; Germany
    Phone: +49 (0) 30 94 06 - 38 96
    Fax: +49 (0) 30 94 06 - 38 33
    e-mail: presse@mdc-berlin.de
    http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm


    Images

    Criteria of this press release:
    Biology, Chemistry, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).