idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/23/2007 17:59

Ultrakurze elektrische Ströme

Dr. Viola Düwert Pressestelle
Philipps-Universität Marburg

    Forschern am Fachbereich Physik der Philipps-Universität Marburg ist es mit Hilfe modernster optischer Techniken gelungen, elektrische Stromimpulse zu erzeugen und nachzuweisen, die tausend mal kürzer sind als solche, die bisher mit der schnellsten Elektronik messbar waren. Diese ultrakurzen Stromimpulse wurden durch Bestrahlung von Metalloberflächen mit Femtosekundenlasern generiert (1 Femto¬sekunde = 1 fs = 0,000 000 000 000 001 Sekunden). Aufgrund ihrer kurzen Dauer ermöglichen die Stromimpulse fundamentale Studien der Wechselwirkungsmechanismen von Elektronen im Festkörper. Insbesondere konnten die Marburger Forscher erstmals die ultraschnelle zeitliche Entwicklung der grundlegenden mikroskopischen Prozesse beobachten, die für den elektrischen Widerstand von Materialien verantwortlich sind (Science, 23. November 2007).

    Schon am Anfang des 20. Jahrhunderts erkannte Paul Drude, dass die elektrische Leitfähigkeit von Metallen durch Stöße der Elektronen an den Atomrümpfen bestimmt wird. Aus dieser Überlegung folgt, dass selbst in sehr guten elektrischen Leitern wie Kupfer die Zeit zwischen zwei Stößen nur wenige 10 Femtosekunden beträgt. Diese Effekte konnten bisher jedoch nie direkt gemessen werden, da auf dieser Zeitskala keine Transportmessungen durchgeführt werden konnten. Die neuartigen, in Marburg erstmals experimentell realisierten und theoretisch modellierten Strompulse machen nun gerade solche Untersuchungen möglich und eröffnen damit ein weites Feld für fundamentale Studien. Außerdem könnte die gezielte Erzeugung und Manipulation von Stromimpulsen auf dieser extrem kurzen Zeitskala eines Tages zur Entwicklung elektronischer Bauelemente mit ultraschnellem Ladungsträgertransport führen.

    Zur Erzeugung der elektrischen Ströme an einer Kupferoberfläche verwendeten die Forscher aus Marburg ultrakurze sichtbare und ultraviolette Laserimpulse (gelbe und blaue Anregungspulse in der Abbildung), deren Frequenzen sich genau um einen Faktor zwei unterschieden und die phasenstarr zueinander stabilisiert wurden. Durch Variation der relativen Phase der oszillierenden Lichtfelder konnte sowohl die Richtung als auch der Betrag des Stromes kontrolliert werden. Da hierbei die Phasenbeziehung der anregenden Lichtfelder, also ihre zeitliche Kohärenz zueinander, die entscheidende Rolle spielt, spricht man auch von einer kohärenten Kontrolle.
    Die Besonderheit des Marburger Experimentes liegt aber vor allem in dem zeitaufgelösten Nachweis des Stromes mit Hilfe des Photoeffektes. Dazu wird ein dritter, roter Laserimpuls mit variabler Zeitverzögerung eingestrahlt, der die angeregten Elektronen aus der Probe herauslöst ohne ihre Geschwindigkeit parallel zur Probenoberfläche zu ändern. Der Strom in der Probe kann dann direkt durch Messung der Geschwindigkeitsverteilung der emittierten Elektronen mit einem Elektronenanalysator beobachtet werden. Die Abbildung illustriert eine Anregung mit der Phasendifferenz, bei der sich die meisten angeregten Elektronen zunächst nach rechts bewegen. Ihre Geschwindigkeiten parallel zur Oberfläche der Probe betragen dabei typisch etwa 1 Å/fs oder 100 km/s (1 Å = 0.000 000 0001 m, 3 Å entsprechen dem typischen Atomabstand in Festkörpern). Durch Streuung der Elektronen mit Defekten der Probe, bei welcher die Ausbreitungsrichtung der Elektronen geändert wird, geht die zunächst asymmetrische Verteilung in wenigen zehn Femtosekunden in eine symmetrische Verteilung über und der Strom fällt ab. Im Experiment wird diese ultrakurze Zerfallszeit in einem Anregungs-Abfrage (Pump-Probe)-Schema aufgelöst, bei dem die Geschwindigkeitsverteilung für verschiedene Zeitverzögerungen gemessen wird.

    Die Zeitauflösung wird dadurch erreicht, dass die Laserimpulse über leicht unterschiedliche Wege geführt werden. Aufgrund der hohen Lichtgeschwindigkeit entspricht dabei ein Wegunterschied von etwa 0,003 mm einer Zeitverzögerung von 10 fs. Damit die Elektronen ungehindert aus der Probe austreten können, sowie beim Nachweis nicht mit Luftmolekülen zusammenstoßen, wurden die Experimente an einer sehr sauberen und geordneten Oberfläche eines Kupfer-Einkristalls unter Ultrahochvakuumbedingungen durchgeführt. Dazu wurde der Restgasdruck in der Experimentierkammer um mehr als 13 Größenordnungen gegenüber dem normalen Luftdruck auf 6x10-11 mbar abgesenkt.

    Orginalveröffentlichung:
    J. Güdde, M. Rohleder, T. Meier, S.W. Koch, U. Höfer,
    Time-resolved investigation of coherently controlled electric currents at a metal surface,
    Science, 23. November 2007: 1287-1291.

    Kontakt: Prof. Dr. Ulrich Höfer
    Fachbereich Physik und Zentrum für Materialwissenschaften
    Philipps-Universität Marburg
    Renthof 5, 35032 Marburg

    Telefon: +49 - 6421 / 28 24215
    Fax: +49 - 6421 / 28 24218
    E-Mail: hoefer@physik.uni-marburg.de
    http://www.physik.uni-marburg.de/of/


    More information:

    http://www.physik.uni-marburg.de/of/dynamics/cc_animation.html <Animation des Experiments>


    Images

    Schematische Darstellung der Erzeugung und des Nachweises ultrakurzer elektrischer Stromimpulse
    Schematische Darstellung der Erzeugung und des Nachweises ultrakurzer elektrischer Stromimpulse
    Philipps-Universität Marburg
    None

    Blick ins Labor. Außer dem komplexen optischen Aufbau erkennt man im Hintergrund die Ultrahochvakuumkammer mit dem halbkugelförmigen Elektronenanalysator.
    Blick ins Labor. Außer dem komplexen optischen Aufbau erkennt man im Hintergrund die Ultrahochvakuum ...
    Philipps-Universität Marburg
    None


    Criteria of this press release:
    Mathematics, Physics / astronomy
    transregional, national
    Research results
    German


     

    Schematische Darstellung der Erzeugung und des Nachweises ultrakurzer elektrischer Stromimpulse


    For download

    x

    Blick ins Labor. Außer dem komplexen optischen Aufbau erkennt man im Hintergrund die Ultrahochvakuumkammer mit dem halbkugelförmigen Elektronenanalysator.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).