idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/07/2007 13:49

Die DNA verrät ihre Geheimnisse: Ein Dresdner Team deckt die elektronische Struktur der Doppelhelix auf und publiziert in Nature Materials

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    Die DNA verrät ihre Geheimnisse
    Ein Dresdner Team deckt die elektronische Struktur der Doppelhelix auf und publiziert in Nature Materials

    Seit mehr als zehn Jahren versuchen Wissenschaftler, die elektronische Struktur der DNA zu entschlüsseln, oder genauer: herauszufinden, wie die Elektronen in den molekularen Orbitalen der berühmten Doppelhelix verteilt sind. Ein Einblick in die elektronische Struktur der DNA kann zum Beispiel helfen zu verstehen, wie diese sich verhält, wenn sie durch ultraviolette Strahlung beschädigt wird. Aber auch Anwendungen im Bereich der Nanotechnologie profitieren von solchen Erkenntnissen.

    Eine Forschergruppe, die von Prof. Gianaurelio Cuniberti, Professor für Materialwissenschaften und Nanotechnologie an der TU Dresden, koordiniert wird, hat nun erste Erfolge bei der Erforschung der Nukleinsäuremoleküle bei einer Temperatur von minus 195 Grad Celsius erbracht. Zusammengearbeitet hat das Team dabei mit der Hebräischen Universität Jerusalem, der Universität Tel Aviv, dem Materialforschungsinstitut INFM-CNR in Modena und dem interuniversitären Konsortium CINECA in Bologna. Ihre Studie, publiziert im renommierten Fachblatt Nature Materials, nutzt ein Rastertunnelmikroskop, mit dem es möglich ist, einerseits den Strom zu messen, der durch das auf einem Goldsubstrat aufgebrachte Molekül fließt, und gleichzeitig die Anordnung der elektronischen Orbitale zu beobachten.

    Dank der theoretischen Berechnungen, die auf der Lösung bestimmter Quantengleichungen fußen, war es den Wissenschaftlern möglich, die elektronische Struktur zu bestimmen, die am ehesten mit dem gemessenen Strom übereinstimmt, und dann herauszufinden, welche Elemente der Doppelhelixstruktur dazu beitragen, dass Elektronen durch die Doppelhelix wandern können. Um die Störungen gering zu halten, die durch Verunreinigungen und andere Störungen verursacht werden, haben die Forscher ein langgezogenes und etwas vereinfachtes Molekül benutzt, das sich nur aus den beiden Nukleinbasen Guanin und Zytosin zusammensetzt.

    Das Potenzial dieser Entdeckung ist enorm: das Verständnis der elektronischen Eigenschaften der DNA ist die Voraussetzung für eine unendliche Anzahl weiterer Anwendungen in Bereichen, die von der Biochemie bis zur Nanotechnologie reichen. Beispielsweise könnte es nun möglich sein, genau zu erklären, wie ultraviolette Strahlung die DNA angreift, wie genetische Mutationen so genannte "freie Radikale" produzieren, und vor allem wie das Molekül darauf reagiert: DNA-Reparaturen treten tatsächlich durch die Weitergabe elektrischer Ladung innerhalb der Doppelhelix auf, die sich in veränderten Molekülbindungen niederschlägt. Auf dem Feld der Nano-Bio-Elektronik profitiert vor allem die Forschung an elektrischen Schaltkreisen, die sich aus biologischen Molekülen zusammensetzen, von den neuen Erkenntnissen. DNA wird dort als ein mögliches Gerüst für winzige Nanodrähte angesehen, um mit ihnen "biologische Chips" entwickeln zu können, die viel kleiner als die heutigen Bauteile auf Siliziumbasis sind.

    Diese Forschungsaufgaben werden in Dresden am Max-Bergmann-Zentrum für Biomaterialien des Instituts für Materialwissenschaften der TU Dresden fortgeführt, wo Prof. Cuniberti seit Oktober 2007 die Professur für Materialwissenschaften und Nanotechnik leitet.

    Weitere Informationen: Prof. Dr. Gianaurelio Cuniberti, Tel. 0351 463-31420, E-Mail: office@nano.tu-dresden.de


    More information:

    http://nano.tu-dresden.de/


    Images

    Criteria of this press release:
    Materials sciences
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).