idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/13/2007 10:03

Molecular code broken for drug industry's pet proteins

Maria Erlandsson, Stockholm University Informationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    All cells are surrounded by protective, fatty membranes.In the cell membrane there are thousands of membrane proteins that transport nutritional substances, ions, and water through the membrane. Membrane proteins are also necessary for cells to recognize each other in the body and for a nervous system, for example, to be formed. Researchers at Stockholm University in Sweden have now managed to reveal the "molecular code" that governs the insertion of proteins in the cell membrane. This work is reported in an article being published on December 13 in the journal Nature.

    About 25 percent of all proteins in a cell are found in the cell membrane. Since they regulate all communication between the inside of the cell and the surrounding environment, many membrane proteins are crucial to the life of the cell. Disruptions of their functions often lead to diseases of various kinds. For the drug industry, membrane proteins are high priority "drug targets."

    To be suitable for deployment in the fatty cell membrane, all membrane proteins must be lipophiles ("fat-lovers"). All cells have special machinery for producing and dealing with "fatty" proteins and to see to it that they are deployed in proper manner in the cell membrane. The Stockholm University scientists have developed a method for the detailed study of the properties of a membrane protein that are required for it to be recognized by the cell machinery. A couple of years ago the research team published a first article in Nature in which they managed to show that there is a "fat threshold" that determines whether a protein can be deployed to a membrane or not. In this new study they have fully revealed the molecular code that governs the structure of membrane proteins.

    "Now that we have deciphered the code, we can determine with a high degree of certainty which parts of a protein will fasten in the membrane." says Gunnar von Heijne.

    This new knowledge will help researchers all over the world who are trying to understand more about the cell and its membrane, not least in the drug industry.

    "Interest in membrane proteins is at a peak right now, and our findings can be key pieces of the puzzle for pharmaceutical chemists working with drug design, for example," says Gunnar von Hejne.

    Name of article
    Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, December 13.

    For more information
    Professor Gunnar von Heijne, Department of Biochemistry and Biophysics, Stockholm University. E-mail: gunnar@dbb.su.se. Cell phone: +46 (0)70-394 1107

    For image
    Phone: +46 (0)8-16 40 90 or press@su.se


    Images

    Criteria of this press release:
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).