Die Chemotherapie von Tumoren wird durch ein besonderes Verhalten der Tumorzellen erschwert. Diese können entweder sterben, weiter wachsen oder in einen Wachstumsarrest übergehen. Letzterer Zustand, auch als Zellalterung oder Seneszenz bezeichnet, lässt die Tumorzellen in der G2/M Phase des Zellzyklus arretieren. Die Zellen vergrößern sich, schwellen an, besitzen größere Vakuolen und mehr Zellorganellen. Die molekularen Vorgänge bei der Seneszenz sind weitgehend unverstanden. Möglicherweise entgehen die Tumorzellen auf diese Weise dem sicheren Zelltod, zumindest haben sie noch eine Überlebenschance, wenn es ihnen gelingt, wieder in den Zellzyklus zurückzukehren.
Über den Zusammenhang von Wachstumsarrest und Caveolinexpression wird in der Arbeitsgruppe von Kathrin Barth und Michael Kasper am Institut für Anatomie der Medizinischen Fakultät "Carl Gustav Carus" Dresden gearbeitet:
Es hat sich herausgestellt, dass ein mikrovesikuläres Membranprotein, das Caveolin-1, ein molekularer Schalter für den Alterungsprozess von normalen und Tumorzellen darstellt. Tumorzellen besitzen in der Regel wenig Caveolin-1. Deshalb sprechen wir auch von einer Tumorsuppressorfunktion dieses Proteins. Nach Behandlung von Lungenkarzionomzellen mit Bleomycin, einem weit verbreiteten Anti-Krebsmittel, wird das Caveolin-1 in der Tumorzellinie A549 verstärkt gebildet und die Zellen werden seneszent. Blockiert man vor der Bleomycinzugabe in den Tumorzellen die Produktion von Caveolin-1, wird die Seneszenz verhindert, die Zellen bleiben im Zellzyklus. Für die Blockade der Produktion ausgewählter Proteine der Zelle wird die in der Molekularbiologie übliche siRNA-Technologie eingesetzt. Dieses neue biologische Prinzip wird durch kurzkettige interferierende RNA-Moleküle (small interfering RNA, siRNA) vermittelt. Unter RNA-Interferenz versteht man die sequenzspezifische Hemmung der Translation eines Proteins durch ein Doppelstrang-RNA-Molekül identischer Sequenz. Kurzkettige Doppelstrang-RNA-Moleküle werden derzeit intensiv auf eine mögliche therapeutische Anwendung beim Menschen hin untersucht.
Die Möglichkeit der kontrollierten Steuerung von Zellwachstum, Wachstumsarrest und Zelltod von Tumorzellen setzt voraus, die einzelnen Signalwege, die zur Bleomycin-induzierten Caveolin-1-Vermehrung führen, genau zu erforschen. Hier ergeben sich dann auch neue Möglichkeiten gezielter Interventionen bei der Krebsbehandlung.
Kontakt: Dr. rer.nat. Kathrin Barth, Dresden
Tel. +49 (351) 458 6076,
e-mail: kathrin.barth@mailbox.tu-dresden.de
Prof. Dr. rer. nat. Michael Kasper, Tel. +49 (351) 458 6080,
e-mail: michael.kasper@tu-dresden.de
Die Wilhelm Sander-Stiftung fördert die Fortsetzung dieses Forschungsprojekt mit weiteren 110.000 €, nachdem bislang bereits über 90.000 € Fördermittel geflossen sind.
Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.
Weitere Informationen: www.wilhelm-sander-stiftung.de
Criteria of this press release:
Medicine, Nutrition / healthcare / nursing
transregional, national
Research projects
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).