idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/26/2008 17:04

Statistics are insufficient for study of proteins' signal system

Johanna Blomqvist, Uppsala University Informationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    Ten years ago great attention was attracted by the discovery that it was possible to demonstrate signal transfer in proteins using statistical methods. In an article in the journal Proceedings of the National Academy of Science (PNAS) Uppsala researchers are now presenting results of experiments that contradict the theory.

    Proteins govern nearly all chemical processes in the body's cells. A fundamental property of proteins is their ability to transfer signals - both within and between proteins. It is known, for example, that such signal transfer is vital to haemoglobin, which transports oxygen in the body. In that instance the mechanism has largely been clarified.

    "But in other instances very little is known about the mechanisms or whether such signal transfer even occurs," says Per Jemth, who together with his research group at Uppsala University is studying whether signal transfer also occurs in small proteins.

    Nearly ten years ago great attention was attracted by an article published in Science that described a method of demonstrating signal transfer in proteins by comparing their amino acid sequence. The authors recorded a statistical method of showing how certain parts of proteins change together through evolution, i.e. if a change had taken place in one part a change simultaneously took place in another part of the protein. One thus found a network of parts that seemed to belong together, and within this network signal transfer was deemed to take place.

    But the Uppsala researchers saw several things that were not right about the results in the much discussed article, and by means of experiments they can now show that no more signals occur in this network than with other parts of the protein. They instead found, completely logically, that nearby parts of the protein interact more with each other than parts that are a long way apart.

    "Our results thus question whether statistical methods can demonstrate signal transfer within proteins, and emphasise the importance of precise experiments to substantiate computer-based methods in protein chemistry," says Per Jemth.

    The ability to predict proteins' function down to the smallest detail on the basis of their amino acid sequence is a goal that has preoccupied many researchers ever since human DNA became known. This study emphasises that experiments are needed to improve and refine the computerised methods currently in use.

    "When theory, computer simulation and experiments provide the same answers the long-term goal has been attained, but there's still a long way to go."

    For further information contact Per Jemth, Tel.: +46 (0)70-260 51 92, e mail: Per.Jemth@imbim.uu.se


    More information:

    http://www.pnas.org/cgi/content/abstract/0711732105v1


    Images

    Criteria of this press release:
    Biology, Chemistry
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).