idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/23/2008 15:26

Heidelberger Wissenschaftler entdecken neuen Mechanismus der Auflösung von Proteinaggregaten

Dr. Michael Schwarz Pressestelle
Ruprecht-Karls-Universität Heidelberg

    Der Arbeitsgruppe um Prof. Bernd Bukau vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) ist es gelungen, erstmals auf molekularer Ebene zu verstehen, wie eine Zelle stressbedingte Proteinaggregate wieder auflösen kann

    Um biologische Funktionen in der Zelle erfüllen zu können, muss jedes neusynthetisierte Protein seine einzigartige dreidimensionale Struktur annehmen. Zellulärer Stress oder Mutationen stören die korrekte Strukturbildung, die sogenannte native Proteinfaltung, und können so die Ablagerung schädlicher, unlöslicher Proteinaggregate hervorrufen. Proteinaggregation ist ein zentrales Problem z.B. bei Temperaturerhöhungen, denen Zellen ausgesetzt sind, und bei der Entstehung neurodegenerativer Krankheiten, wie z.B. Parkinson, Alzheimer oder Prionenerkrankungen. Der Arbeitsgruppe um Prof. Bernd Bukau vom Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) ist es gelungen, erstmals auf molekularer Ebene zu verstehen, wie eine Zelle stressbedingte Proteinaggregate wieder auflösen kann.

    Das zelluläre System der Proteinqualitätskontrolle, das aus molekularen Faltungshelfern, sogenannten Chaperonen, und Proteasen besteht, sorgt für die Reparatur bzw. den Abbau von aggregierten Proteinen. Das Labor von B. Bukau untersucht das Phänomen der Proteindisaggregation am Beispiel von ClpB, einem Chaperon aus dem Darmbakterium Escherichia coli. ClpB ist ein energieabhängiges, ringförmiges Protein mit einem zentralen, durchgängigen Kanal und besitzt die einzigartige Fähigkeit, in Kooperation mit einem weiteren Chaperonsystem Proteinaggregate vollständig aufzulösen und die einzelnen Proteine wieder in den nativen Zustand zurückzuführen. In früheren Arbeiten der Arbeitsgruppe konnte eindrucksvoll gezeigt werden, dass ClpB einzelne Proteinmoleküle aus dem Aggregat herauszieht und diese dann energieabhängig durch seinen zentralen Kanal fädelt, ein Mechanismus, der als Translokation bezeichnet wird.

    Lange wurde Disaggregation an Modellproteinen untersucht, die sich unter Stressbedingungen vollständig entfalten. Viele zelluläre Proteine sind jedoch komplex aufgebaut und bestehen aus mehreren Faltungsdomänen, die bei stressbedingter Verklumpung gemischte Aggregate ausbilden, in denen fehlgefaltete und native Domänen gleichermaßen vorkommen. Das Schicksal der nativen Domänen während der Aggregatauflösung war bis dato unverstanden. In einer neuen Studie, die in dieser Woche in der online-Ausgabe von Nature Structural Molecular Biology veröffentlicht wurde (DOI-Nr. 10.1038/nsmb.1425), ist es den Autoren nun gelungen, den Mechanismus der ClpB-vermittelten Auflösung solch gemischter, physiologisch relevanter Aggregate aufzuklären.

    ClpB reaktiviert gemischte Aggregate schnell und effizient. Dabei erkennt ClpB nur den fehlgefalteten Anteil eines Proteins und fädelt diesen in seinen zentralen Kanal ein, während die stabilen Domänen nicht angegriffen werden. Die äußerst rasche Reaktivierung eines aggregierten Proteins, dessen fehlgefaltete Domäne an beiden Enden durch eine stabile Domäne blockiert ist, zeigt zum ersten Mal, dass die Auflösung von Proteinaggregaten durch ClpB nicht von frei zugänglichen Enden der verklumpten Proteine abhängig ist, sondern an exponierten, internen Segmenten in fehlgefalteten Strukturen beginnen kann.

    Die veröffentlichten Ergebnisse zeigen die Anpassung des ClpB-Chaperonsystems an seine zelluläre Aufgabe. ClpB katalysiert die für eine Zelle lebensnotwendige Auflösung und Reaktivierung aggregierter Proteine und ist spezialisiert auf die Erkennung und Entfaltung fehlgefalteter Domänen; die Translokation nativer Domänen würde dabei eine unnötige Energieverschwendung darstellen. Die Prozesse und Mechanismen, die zu Proteinaggregation und deren Umkehr führen, sind von medizinischer Relevanz, da Proteinaggregation mit vielen neurodegenerativen Krankheiten assoziiert ist. In Säugern wurde bis jetzt kein ClpB-Homolog identifiziert, jedoch gibt es zahlreiche Hinweise auf Disaggregation auch in höheren Eukaryonten. Es ist nun zu prüfen, ob die Disaggregation dieser Proteine einem Chaperon-vermittelten, ähnlich dem hier in Bakterien beschriebenen Mechanismus folgt.

    Pressekontakt:
    Dr. Ralf Tolle
    Zentrum für Molekulare Biologie
    der Universität Heidelberg (ZMBH)
    Im Neuenheimer Feld 282
    69120 Heidelberg
    Tel. 06221 546850, Fax 545507
    r.tolle@zmbh.uni-heidelberg.de

    Allgemeine Rückfragen von Journalisten auch an:
    Dr. Michael Schwarz
    Pressesprecher der Universität Heidelberg
    Tel. 06221 542310, Fax 542317
    michael.schwarz@rektorat.uni-heidelberg.de
    http://www.uni-heidelberg.de/presse

    Irene Thewalt
    Tel. 06221 542310, Fax 542317
    presse@rektorat.uni-heidelberg.de


    Images

    Criteria of this press release:
    Biology, Chemistry, Information technology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).