idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/28/2008 12:38

Das Geheimnis der Plasmaheizung ist gelüftet: RUB-Forscher entdecken Mechanismus der Energieeinkopplung

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Gelüftet: das Geheimnis der Plasmaheizung
    RUB-Forscher entdecken Mechanismus der Energieeinkopplung
    Physical Review Letters: Elektronen schaukeln sich selbst auf

    Das Geheimnis der Elektronenheizung in Niedertemperaturplasmen haben Bochumer Forscher vom Center of Excellence "Plasma Science and Technology" (CPST) der Ruhr-Universität gelüftet - und damit eine Antwort gefunden auf die Jahrzehnte alte Frage, warum gerade die Elektronen in diesen Plasmen so heiß sind. Durch das nichtlineare Verhalten der Randschicht schaukelt sich der im Plasma fließende elektrische Strom selbst auf. Direkt damit verbunden ist eine Erhöhung der elektrischen Leistung und somit auch der Heizung des Plasmas. Über diesen bisher unbekannten Mechanismus, "nichtlineare Elektronen-Resonanz-Heizung" genannt, berichten die Forscher in der aktuellen Ausgabe der renommierten Fachzeitschrift "Physical Review Letters", deren Printausgabe am Freitag, 29.8. erscheint.

    Grundlegendes Verständnis nach 30 Jahren

    Mit ihren Forschungsergebnissen leisten die Bochumer Elektroingenieure Dr.-Ing. Thomas Mussenbrock und Prof. Dr. Ralf Peter Brinkmann (Lehrstuhl für Theoretische Elektrotechnik der RUB) zusammen mit Kollegen von der Universtity of California at Berkeley um Prof. Mike Lieberman einen Beitrag, die seit über 30 Jahren industriell eingesetzten, so genannten kapazitiven Niedertemperaturplasmen grundlegend zu verstehen. "Seit den 70er Jahren gab es eine lebhafte fachliche Debatte über die Funktionsweise der Plasmen, die jedoch zu keinem abschließendem Ergebnis geführt hat. Insbesondere die exakte Mechanismus der Energieeinkopplung ist nicht vollständig verstanden", sagt Thomas Mussenbrock. "Seitdem man Plasmen entdeckt hat und nutzt, gibt es deutliche Unterschiede zwischen theoretischen Vorhersagen vom Verhalten des Plasmas und tatsächlichen Messungen.". Der an der Ruhr-Universität entdeckte Mechanismus liefert einen neuen Ansatz, um die Heizmechanismen in Niedertemperaturplasmen erstmals vollständig zu erklären.

    Vielfältige Plasmen

    Ohne Plasma kein Pentium: Mit Hilfe der elektrisch angeregten Gase lassen sich zum Beispiel Strukturen auf Mikrochips prägen, indem man Materialien im Nanometerbereich abträgt oder aufdampft. Plasmabasierte Verfahren machen heute bereits rund die Hälfte aller Prozessschritte in der Mikroelektronik aus. Nicht nur hier sind die Plasmen unentbehrlich, sondern auch in der Licht-, Umwelt- und Medizintechnik. Eine der besonderen Eigenschaften der eingesetzten Niedertemperaturplasmen sind die enthaltenen Elektronen mit Temperaturen von mehreren 10.000 Grad Celsius - im Gegensatz zu den auch vorhandenen Ionen sowie neutralen Atomen und Molekülen, die mit nahezu Zimmertemperatur vergleichsweise kalt sind (etwa im Unterschied zur Sonne als Hochtemperaturplasma). Erst dieses thermische Ungleichgewicht ermöglicht chemische Reaktionen und andere Prozesse, was Niedertemperaturplasmen so vielfältig nutzbar macht.

    Der Schlüssel zur gezielten Nutzung

    Die Frage, warum die Elektronen insbesondere bei sehr niedrigen Gasdrücken so heiß werden können, war bisher nicht vollständig geklärt. Theoretisch und experimentell konnten die Forscher am CPST nun die "nichtlineare Elektronen-Resonanz-Heizung" nachweisen. Basis des Mechanismus ist eine dem Plasma eigene Schwingungsneigung. Indem man eine bestimmte Schwingung anregt - ausgehend vom nichtlinearen Verhalten der so genannten Plasmarandschicht - kommt es zu einer "Aufschaukelung" des im Plasma fließenden elektrischen Stromes. Theoretische Untersuchungen haben gezeigt, dass die Elektronen-Resonanz-Heizung die Effizienz der Energieeinkopplung mehr als verdoppeln kann. Laborversuche am CPST von Prof. Uwe Czarnetzki (Fakultät für Physik und Astronomie) und Prof. Peter Awakowicz (Fakultät für Elektrotechnik und Informationstechnik) bestätigten dieses Ergebnis. Die RUB-Forscher liefern zugleich einen neuen Ansatzpunkt zu verstehen, wie man Plasmen elektrisch anregen muss, um sie möglichst effizient zu erzeugen. "Die Elektronen-Resonanz lässt sich sogar gezielt ansteuern, um den Mechanismus in Gang zu setzen", so Thomas Mussenbrock.

    Titelaufnahme

    Thomas Mussenbrock, Ralf Peter Brinkmann, Michael A. Lieberman, Allan J. Lichtenberg, and Emi Kawamura: Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges. In: Physical Review Letters, 101, 085004 (2008). doi: 10.1103/PhysRevLett.101.085004 (online seit 22.8.2008)

    Weitere Informationen

    Dr.-Ing. Thomas Mussenbrock, Prof. Dr. Ralf Peter Brinkmann, Lehrstuhl für Theoretische Elektrotechnik, Fakultät für Elektrotechnik und Informationstechnik der RUB, Tel. 0234/32-26338, -25663, E-Mail: Thomas.Mussenbrock@rub.de
    Internet: http://www.tet.rub.de


    Images

    Kapazitiv gekoppeltes Hochfrequenz-Plasma im Experiment
    Kapazitiv gekoppeltes Hochfrequenz-Plasma im Experiment


    Criteria of this press release:
    Electrical engineering, Energy, Mathematics, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Kapazitiv gekoppeltes Hochfrequenz-Plasma im Experiment


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).