Die magnetische Aktivität der Sonne schwankt in einem mehrjährigen Zyklus und befindet sich derzeit in einem besonders tiefen Aktivitätsminimum - auf der Sonnenscheibe sind keine Flecken zu beobachten. Dennoch ist auch in einer solchen Phase Magnetismus nachweisbar, wie Wissenschaftler der Universität Göttingen gezeigt haben. Mit einem neuen Verfahren der automatisierten Mustererkennung in einem speziellen blauen und violetten Teil des Sonnenlichtspektrums ist es ihnen gelungen, lichtschwache magnetische Gebiete mit einem Durchmesser von nur wenigen hundert Kilometern sichtbar zu machen und zu vermessen. Sie gehen davon aus, dass es mindestens 660.000 derartige Magnetgebiete auf der Sonnenoberfläche gibt. Die Ergebnisse hat der Astrophysiker Dr. Eberhard Wiehr mit Burkart Bovelet in der Zeitschrift "Astronomy & Astrophysics" veröffentlicht.
Mindestens 660.000 kleine Magnetfelder auf der Sonnenoberfläche
Göttinger Astrophysiker entwickeln neues Verfahren zur Erfassung magnetischer Strukturen
(pug) Die magnetische Aktivität der Sonne schwankt in einem mehrjährigen Zyklus und befindet sich derzeit in einem besonders tiefen Aktivitätsminimum - auf der Sonnenscheibe sind keine Flecken zu beobachten. Dennoch ist auch in einer solchen Phase Magnetismus nachweisbar, wie Wissenschaftler der Universität Göttingen gezeigt haben. Mit einem neuen Verfahren der automatisierten Mustererkennung in einem speziellen blauen und violetten Teil des Sonnenlichtspektrums ist es ihnen gelungen, lichtschwache magnetische Gebiete mit einem Durchmesser von nur wenigen hundert Kilometern sichtbar zu machen und zu vermessen. Sie gehen davon aus, dass es mindestens 660.000 derartige Magnetgebiete auf der Sonnenoberfläche gibt. Die Ergebnisse hat der Astrophysiker Dr. Eberhard Wiehr mit Burkart Bovelet in der Zeitschrift "Astronomy & Astrophysics" veröffentlicht.
In einer Phase des Aktivitätsminimums "verharren" die magnetischen Kraftlinien der Sonne in über 100.000 Kilometern Tiefe, bis sie von Auftriebskräften nach und nach hervorgebracht werden. Dort, wo sie die Oberfläche durchstoßen, erzeugen sie Sonnenflecken, die eine Ausdehnung von mehr als 10.000 Kilometern erreichen können. Sie sind eingebettet in große Regionen von magnetischer Nord- und Südpolarität, die auf den Magnetkarten des Satelliten-Instruments MDI hell und dunkel erscheinen. Nach einem Maximum der Fleckenzahl zwischen 2000 und 2002 gab es im November vergangenen Jahres einen Tiefstand ohne jegliche Flecken. Dennoch war die Sonne nach Angaben von Dr. Wiehr nicht frei von Magnetismus. So zeigte die MDI-Karte ein ,Pfeffer-und-Salz-Muster' zahlreicher Nord- und Südpole von nur wenigen hundert Kilometern Durchmesser.
Diese kleinen Magnetgebiete sichtbar zu machen, stellte die Astrophysiker vor besondere Herausforderungen: "Sie sind zum Teil derart eng benachbart, dass sich ihre Nord- und Südpolaritäten bei begrenzter Bildschärfe der Teleskope gegenseitig auslöschen. Selbst bei erfolgreicher Trennung lässt sich die magnetische Struktur aus den Daten nur mit Kenntnis der Temperaturverteilung ableiten. Die komplizierte Messung des Magnetismus verlangt zudem eine Belichtungszeit, die oft länger ist als die Lebensdauer der Magnetstrukturen", so Dr. Wiehr. Die Forscher nutzten daher für ihre Beobachtungen das blaue Licht des Kohlenwasserstoff-Moleküls (CH) und das violette Licht des ionisierten Kalziums (Ca+). In diesen Spektralbereichen leuchten die Magnetgebiete deutlich heller als ihre Umgebung. Schmalbandige Farbfilter machen es möglich, sie mit extrem kurzer Belichtung aufzunehmen.
Die Aufnahmen der Göttinger Wissenschaftler zeigen eine außerordentliche Trennschärfe: In einem Ausschnitt von 108.000 mal 85.000 Kilometern konnten sie mit der von Burkart Bovelet entwickelten Software knapp 3.000 kleine magnetische Gebiete identifizieren, ihr weitgehend automatisiertes Programm zur Mustererkennung findet dabei auch außerordentlich lichtschwache Bereiche. Dr. Wiehr: "Rechnet man die so erfassten Strukturen auf die gesamte Sonnenoberfläche hoch, so ist diese von wenigstens 660.000 kleinräumigen Magnetgebieten bedeckt." Die Astrophysiker vermuten, dass ihre tatsächliche Zahl noch größer sein dürfte. Für sie stellt sich die Frage, ob diese Magnetfelder auf die gleiche Weise erzeugt werden wie der mehrjährige Fleckenzyklus oder ob ihre Entstehung nahe der Sonnenoberfläche auf lokale "Dynamoeffekte" zurückzuführen ist.
Originalveröffentlichung:
B. Bovelet, E. Wiehr: The quiet Sun's magnetic flux estimated from Ca II H bright inter-granular G-band structures, Astronomy & Astrophysics, DOI: 10.1051/0004-6361:200809717
Kontaktadresse:
Dr. Eberhard Wiehr
Universität Göttingen - Institut für Astrophysik
e-mail: ewiehr@astro.physik.uni-goettingen.de
Oben: Die Sonnenscheibe im Aktivitätsmaximum Mitte Juli 2000, links die Magnetkartierung des Satelli ...
None
Criteria of this press release:
Physics / astronomy
transregional, national
Research results
German
Oben: Die Sonnenscheibe im Aktivitätsmaximum Mitte Juli 2000, links die Magnetkartierung des Satelli ...
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).