idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/21/2008 08:00

Science : Wie die Masse in die Welt kommt - Supercomputer berechnen erstmals die exakte Nukleonenmasse

Peter Schäfer Unternehmenskommunikation
Forschungszentrum Jülich

    Jülich, 21. November 2008 - Einem internationalen Forscherteam ist es erstmalig gelungen, die Masse der wichtigsten Bausteine der Materie - Protonen und Neutronen - auf theoretischem Weg zu berechnen. Das wichtigste Hilfsmittel der Physiker: der Supercomputer JUGENE am Forschungszentrum Jülich. Die aufwändigen Simulationen der Wissenschaftler bestätigen die Richtigkeit einer grundlegenden physikalischen Theorie, der Quantenchromodynamik. Die Ergebnisse wurden in der aktuellen Ausgabe der Zeitschrift "Science" veröffentlicht (21. Nov. 2008 Vol. 322, #5905).

    !! Sperrfrist: Freitag, 21.November, 8.00Uhr MEZ, Mitteleuropäische Zeit !!
    !! Embargo: Thursday, 20 November, 2:00 pm EST, U.S. Eastern Time !!

    Materie ist aus Atomen aufgebaut, Atome wiederum bestehen aus einem Kern aus Protonen und Neutronen, um den Elektronen kreisen. "Mehr als 99,9 Prozent der Masse der sichtbaren Materie stammt von den Protonen und Neutronen", erläutert der gegenwärtig an der Bergischen Universität Wuppertal tätige ungarische Physiker Zoltan Fodor, der das Forschungsprojekt am Jülicher Supercomputer JUGENE geleitet hat. Diese Teilchen, von den Physikern unter dem Begriff "Nukleonen" zusammengefasst, sind aus jeweils drei Quarks aufgebaut.

    Die Masse der drei Quarks ergibt zusammengerechnet jedoch nur etwa fünf Prozent der Masse eines Kernbausteins -- woher also haben die Nukleonen ihre Masse? Die Antwort auf diese Frage findet sich in der berühmten Formel E = m × c2 von Albert Einstein: Energie und Masse sind zueinander äquivalent, und 95 Prozent der Nukleonenmasse haben ihren Ursprung in der Bewegungsenergie der Quarks und zwischen ihnen ausgetauschter Teilchen.

    Die drei Quarks eines Nukleons sind durch die starke Wechselwirkung aneinander gebunden, eine Kraft, die zwar nur im Bereich der Elementarteilchen von Bedeutung ist, die dafür aber - ihr Name sagt es - sehr stark ist. Die Physiker haben seit langem eine theoretische Beschreibung dieser Wechselwirkung, die Quantenchromodynamik. "Im Prinzip sollte es möglich sein, aus der Quantenchromodynamik die Masse der Nukleonen zu berechnen", so Fodor.

    Solche Berechnungen sind jedoch ungeheuer kompliziert. So wie die elektromagnetischen Kräfte durch Photonen - Lichtteilchen - vermittelt werden, gibt es auch bei der starken Wechselwirkung Trägerteilchen, die sogenannten Gluonen. Doch diese Gluonen können sich - im Gegensatz zu Photonen - auch gegenseitig anziehen. Diese Selbstwechselwirkung führt einerseits dazu, dass Quarks sich so stark anziehen, dass sie niemals alleine auftreten, sondern immer zu zweit oder zu dritt größere Teilchen bilden. Und anderseits macht die Selbstwechselwirkung die Berechnung der Masse dieser Teilchen so komplex, dass sie bislang die Möglichkeiten der Forscher überstieg.

    Dank des Supercomputers JUGENE am Forschungszentrum Jülich konnten Fodor und seine Kollegen nun diese Hürde überwinden, erstmals die starke Wechselwirkung auch für größere Quarkabstände richtig beschreiben und so die Massen von Protonen, Nukleonen und anderen aus Quarks aufgebauten Teilchen berechnen. 180 Billionen Rechenoperationen kann JUGENE in jeder Sekunde durchführen, damit ist er der schnellste Computer Europas.

    Für ihre Berechnungen haben Fodor und seine Kollegen Raum und Zeit in ein engmaschiges vierdimensionales Gitter zerlegt und die komplizierten Gleichungen der Quantenchromdynamik jeweils auf den Punkten dieses Gitters gelöst. Dann haben die Forscher den Abstand der Gitterpunkte schrittweise immer kleiner gemacht, um sich so immer weiter an die Wirklichkeit, die kontinuierliche Raumzeit, anzunähern. "Es handelt sich um eine der rechenintensivsten Arbeiten in der Geschichte der Menschheit", so Fodor.

    Als Ergebnis erhielten die Wissenschaftler schließlich Werte für die Massen der Nukleonen, die genau mit den in Experimenten gemessenen Werten übereinstimmen. "Damit haben wir gezeigt, dass die Quantenchromodynamik tatsächlich eine korrekte Beschreibung der starken Wechselwirkung ist", freut sich Fodor.

    "Der Ursprung des überwiegenden Teils der Masse der sichtbaren Materie ist dadurch also geklärt", erklärt der Forscher weiter. Doch damit sind nicht alle Rätsel gelöst. Denn die sichtbare Materie macht nur einen kleinen Teil der Gesamtmasse des Universums aus - etwa 80 Prozent dieser Masse ist dunkel und besteht aus bislang unbekannten Elementarteilchen. "Woher diese Dunkle Materie ihre Masse hat, dafür haben wir bislang keine Erklärung."

    Weitere Informationen zu Zoltan Fodors Forschung:
    http://www.presse-archiv.uni-wuppertal.de/html/module/publikationen/magazin_34/u...

    Aktuelle Ausgaben der Fachzeitschrift science
    http://www.sciencemag.org/

    Ausbaupläne der Jülicher Supercomputer für 2009
    http://www.fz-juelich.de/portal/index.php?cmd=show&mid=647&index=163

    Pressemeldung zur Einweihung von JUGENE:
    http://www.fz-juelich.de/portal/index.php?cmd=show&mid=563&index=163

    Die aktuelle Broschüre Supercomputing (PDF, 2.3 MB)
    http://www.fz-juelich.de/portal/www.fz-juelich.de/portal/datapool/page/569//Supe...

    Supercomputer und Simulationswissenschaften in Jülich
    http://www.fz-juelich.de/supercomputer

    Ansprechpartner:
    Prof. Zoltan Fodor, Tel. 0202 439-2614,
    E-Mail: fodor@theorie.physik.uni-wuppertal.de

    Pressekontakt:
    Koste Schinarakis, Tel. 02461 61-4771,
    E-Mail: k.schinarakis@fz-juelich.de


    Images

    Supercomputer helfen, die Prozesse in Atomkernen und deren Masse zu verstehen. Die Kräfte zwischen drei Quarks im Nukleon, erklären den sichtbaren Anteil der Masse im Universum.
    Supercomputer helfen, die Prozesse in Atomkernen und deren Masse zu verstehen. Die Kräfte zwischen d ...
    Forschungszentrum Jülich / Seitenplan mit Material von NASA, ESA und AURA/Caltech)
    None


    Criteria of this press release:
    Information technology, Mathematics, Philosophy / ethics, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Supercomputer helfen, die Prozesse in Atomkernen und deren Masse zu verstehen. Die Kräfte zwischen drei Quarks im Nukleon, erklären den sichtbaren Anteil der Masse im Universum.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).