idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/04/2008 20:00

Ein Quantensimulator für komplexe elektronische Materialien

Petra Giegerich Presse- und Öffentlichkeitsarbeit
Johannes Gutenberg-Universität Mainz

    Forscher simulieren komplexe elektronische Isolatoren mit ultrakalten Atomen in künstlichen Kristallen aus Licht

    (Mainz, 4. Dezember 2008) Die Entwicklung neuer komplexer Materialien mit maßgeschneiderten Eigenschaften stellt eine der größten Herausforderungen in der modernen Quantenphysik dar. Bereits 1982 formulierte der amerikanische Nobelpreisträger Richard P. Feynman daher die Idee, die Eigenschaften komplexer Systeme mit Hilfe von Quantensimulatoren zu untersuchen, das heißt die Materialien mit anderen, künstlichen, aber genau kontrollierbaren Quantensystemen zu simulieren. In der jüngsten Ausgabe der Zeitschrift Science berichtet ein Wissenschaftlerteam unter Leitung von Univ.-Prof. Dr. Immanuel Bloch von der Johannes Gutenberg-Universität Mainz über ein neues Verfahren, um das Verhalten der Elektronen in einem Festkörperkristall mit Hilfe von ultrakalten Atomen zu simulieren.

    Die Atome sind dabei in einem künstlichen Lichtkristall, einem sogenannten optischen Gitter, gefangen, welches durch die Überlagerung mehrerer Laserstrahlen gebildet wird. Den Forschern aus Mainz, Köln und Jülich gelang es, in einem solchen System eines der spektakulärsten elektronischen Phänomene zu simulieren: Ein Metall kann schlagartig seine Leitfähigkeit verlieren, wenn die Wechselwirkung zwischen den Elektronen zu stark wird. Der daraus resultierende Mott-Isolator ist wahrscheinlich das wichtigste Beispiel eines stark wechselwirkenden Systems in der Festkörperphysik. Es wird vermutet, dass dieses Phänomen in engem Zusammenhang zur Hochtemperatursupraleitung steht, die zwar technisch interessant, aber bisher noch schlecht verstanden ist. Zusätzlich bildet dieses System einen idealen Ausgangspunkt für die Untersuchung des magnetischen Verhaltens moderner Festkörpermaterialien.

    "Fermionische Atome in einem optischen Gitter eignen sich nahezu perfekt dafür, das Verhalten von Elektronen in Festkörpern zu simulieren, weil sie ein flexibles und sehr gut kontrollierbares Modellsystem darstellen", erklärt Ulrich Schneider von der Universität Mainz. Im Vergleich dazu wäre es extrem schwierig, die ablaufenden Prozesse in einem komplexen Material und in Hochtemperatursupraleitern direkt zu untersuchen, da in einem Festkörper unvermeidbare Störstellen und eine Vielzahl von miteinander konkurrierenden Wechselwirkungen auftreten. "In einem realen Festkörper ist es sehr schwierig, die Auswirkungen bestimmter Wechselwirkungen zu isolieren und festzustellen, ob die Abstoßung zwischen den Elektronen allein die Hochtemperatursupraleitung erklären könnte", erläutert Prof. Bloch.

    In dem Experiment werden Kalium-Atome zuerst auf Temperaturen nahe dem absoluten Nullpunkt abgekühlt und anschließend in ein optisches Gitter geladen, welches durch die Überlagerung von mehreren Laserstrahlen gebildet wird. Dabei ordnen sich die Atome in den Knoten der stehenden Laserwelle an und das Lichtfeld wirkt auf die Teilchen wie ein regelmäßiger Kristall aus einigen hunderttausend einzelnen Mikrofallen. Im Simulator übernehmen die Atome die Rolle der Elektronen in einem echten Festkörperkristall, während das Kristallgitter, welches in einem Festkörper aus den Atomrümpfen besteht, durch die überlagerten Laserstrahlen gebildet wird.

    Die Versuchsanordnung in Mainz ermöglichte es den Physikern, die Dichte der Atome und die Stärke der abstoßenden Wechselwirkung im optischen Gitter unabhängig voneinander einzustellen. Dadurch war es möglich, gezielt zwischen metallischen und isolierenden Zuständen hin- und herzuschalten. Insbesondere gelang es, die Existenz des Mott-Isolators in diesem System direkt nachweisen: "Im Gegensatz zu metallischen Zuständen ändert sich die Dichte des Mott-Isolators bei steigendem Druck nicht, da die abstoßenden Kräfte zwischen den Atomen dafür sorgen, dass sich auf jedem Gitterplatz jeweils nur genau ein Atom befindet", so Schneider.

    Die Beobachtung des fermionischen Mott-Isolators in einem optischen Gitter eröffnet neue Möglichkeiten, stark korrelierte Zustände und die damit zusammenhängenden Phänomene zu simulieren und zu untersuchen. Dafür spricht auch die ausgezeichnete Übereinstimmung der Messdaten mit den theoretischen Berechnungen, die in Köln und Jülich mit Hilfe des Jülicher Supercomputers JUGENE auf der Basis moderner Festkörpertheorie durchgeführt wurden.

    Originalveröffentlichung:
    U. Schneider, L. Hackermüller, S. Will, Th. Best, and I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, and A. Rosch
    Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice
    Science, 5. Dezember 2008

    Kontakt und Informationen:
    Univ.-Prof. Dr. Immanuel Bloch
    Institut für Physik
    Quanten-, Atom- und Neutronenphysik (Quantum)
    Johannes Gutenberg-Universität Mainz
    Tel. +49 6131 39-26234 oder 39-22279
    Fax +49 6131 39-25179
    E-Mail: Bloch@uni-mainz.de


    More information:

    http://www.quantum.physik.uni-mainz.de
    http://www.quantum.physik.uni-mainz.de/bec/experiments/fermions/ (Experiment)
    http://www.quantum.physik.uni-mainz.de/bec/gallery/ (Bildergalerie)


    Images

    Illustration des Mott-Isolator-Zustands: Rot und Grün stehen für die beiden unterschiedlichen Spins der Atome.
    Illustration des Mott-Isolator-Zustands: Rot und Grün stehen für die beiden unterschiedlichen Spins ...
    Source: Univ.-Prof. Dr. Immanuel Bloch, Institut für Physik, Johannes Gutenberg-Universität Mainz


    Criteria of this press release:
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    German


     

    Illustration des Mott-Isolator-Zustands: Rot und Grün stehen für die beiden unterschiedlichen Spins der Atome.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).