Sie sind meist nur wenige Millimeter bis Zentimeter lang und führen ein unscheinbares Leben am Gewässergrund. Doch tragen aquatische Insektenlarven und andere Kleinstlebewesen womöglich merklich zum Treibhauseffekt bei. Denn Bakterien im Darm der Wassertiere setzen klimaschädigendes Lachgas frei, zeigen nun Forscher vom Bremer Max-Planck-Institut und der Universität Aarhus.
Wasserlebende Kleinstiere wie Insektenlarven, Muscheln und Schnecken geben Lachgas, ein wichtiges Treibhausgas, an ihre Umgebung ab. Dies geschieht vor allem in Gewässern, die mit dem Nährstoff Nitrat verschmutzt sind, und ist besonders bei denjenigen Tieren zu finden, die mit ihrer Nahrung viele Bakterien zu sich nehmen. Das Fatale: Gerade in den von uns Menschen stark beeinträchtigten Gewässern treffen diese beiden Voraussetzungen für Lachgasfreisetzung häufig zusammen. Insgesamt ist deshalb damit zu rechnen, dass sich die in den Gewässern produzierte Treibhausgasmenge zukünftig noch erhöhen wird.
Peter Stief vom Max-Planck-Institut für Marine Mikrobiologie in Bremen und seine Kollegen von der Universität Aarhus, Dänemark, untersuchten insgesamt 21 verschiedene Kleintierarten aus Seen, Fließgewässern und dem Meer (Abb. 1). Dabei stellten sie fest, dass die Menge an freigesetztem Lachgas stark von der Ernährung der Tiere abhing. Räuberische Tiere trugen kaum zur Lachgasproduktion bei. Besonders hohe Raten fanden sich hingegen bei so genannten Filtrierern und Detritusfressern, die organisches Material aus dem Gewässergrund und aus Schwebstoffen filtern. Stief und seine Kollegen zeigen nun: das liegt an den Bakterien, die die Tiere mit der Nahrung aufnehmen.
"Experimente mit Zuckmückenlarven (Abb. 2) ergaben, dass das Lachgas von den Bakterien im Darm der Tiere gebildet wird", erklärt Peter Stief. "Die aus der Nahrung stammenden Bakterien finden im Darm keinerlei Sauerstoff vor und gehen deswegen zur sogenannten Nitratatmung über." Bei dieser Art zu atmen wird aus Nitrat Lachgas gebildet. In ihrem natürlichen Lebensraum, dem Gewässergrund, setzen nitratatmende Bakterien Lachgas weiter zu klimaunschädlichem Stickstoffgas um. Im Darm allerdings ist die Verweilzeit der Bakterien zu kurz, um alle erforderlichen Stoffwechselschritte durchzuführen. Nach zwei bis drei Stunden werden sie quasi auf halber Strecke von den Insektenlarven wieder ausgeschieden. Das bis dahin gebildete Lachgas wird frei (Abb. 3).
Die Lachgasemissionen sind besonders in nitratreichen Gewässern bedeutsam. Erhöhter Nährstoffeintrag, beispielsweise aus Düngemitteln, erhöht die Konzentration von Nitrat in vielen Flüssen, Seen und Küstengewässern und steigert in der Folge auch die Freisetzung des Treibhausgases. In solchen nährstoffreichen Gewässern sind Filtrierer und Detritusfresser oft besonders zahlreich. "Die gute Nachricht lautet also, dass sich der Einsatz für saubere Gewässer und geringere Nitrateinträge aus der Landwirtschaft positiver auf unser Klima auswirken könnte, als bisher angenommen", erläutert Mitautor Lars Peter Nielsen von der Universität Aarhus. "Die schlechte Nachricht ist allerdings, dass sich weltweit die Gewässerqualität gerade wegen der ständig steigenden Nährstoffeinträge weiter verschlechtert." Der tatsächliche Beitrag der aquatischen Kleinstiere zur Belastung der Atmosphäre mit Lachgas lässt sich zur Zeit nur schwer abschätzen. "Aber es steht zu befürchten, dass er in Zukunft eher ansteigen als sinken wird."
In Seen können die Insektenlarven Dichten von 1000en bis 10000en Larven pro Quadratmeter erreichen. Bei einer Tierdichte von etwa 3500 Individuen pro Quadratmeter, wie sie in den beschriebenen Experimenten vorlag, erhöht sich die Abgabe von Lachgas aus dem Gewässerboden immerhin um das Achtfache im Vergleich zu einem Boden ohne Tiere.
Peter Stief führte die vorliegende Studie während eines zweijährigen Aufenthaltes an der Universität Aarhus im Rahmen eines von der Europäischen Union geförderten Marie Curie-Stipendiums durch. Zurück am Max-Planck-Institut, wird er zusammen mit deutschen und dänischen Kollegen und Kolleginnen den Vorgängen weiter auf den Grund gehen. Dabei werden sie ihre Untersuchungen auf Meerestiere ausdehnen und ein besonderes Augenmerk auf die molekularen Hintergründe des Prozesses legen.
Fanni Aspetsberger
Rückfragen an:
Dr. Peter Stief, Tel.: 0421 2028 838; pstief@mpi-bremen.de
oder an die Pressesprecher
Dr. Fanni Aspetsberger, Tel.: 0421 2028 704; faspetsb@mpi-bremen.de
Dr. Manfred Schlösser, 0421 2028 704; mschloes@mpi-bremen.de
Originalartikel:
Nitrous Oxide Emission by Aquatic Macrofauna. Peter Stief, Morten Poulsen, Lars Peter Nielsen, Hans Brix und Andreas Schramm. Proceedings of the National Academy of Sciences of the United States of America.
Beteiligte Institute:
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
Sections of Microbiology and Plant Biology, Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
Abb. 3: An der Oberfläche des Gewässergrundes atmen Bakterien mit Sauerstoff (blaue Ovale), während ...
(Peter Stief, MPI Bremen)
None
Abb. 2: Die Zuckmückenlarve Chironomus plumosus ist in vielen Binnengewässern die vorherrschende Ins ...
(Foto: Christian Lott, MPI Bremen / HYDRA)
None
Criteria of this press release:
Biology, Chemistry, Environment / ecology, Geosciences, Oceanology / climate
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).