idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/09/2009 16:24

Immune cells Ameliorate Hypertension-Induced Cardiac Damage in Mice

Barbara Bachtler Presse- und Öffentlichkeitsarbeit
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

    Researchers in Berlin, Germany have found that a specific type of immune cell, the regulatory T lymphocyte (Treg) plays an important role in hypertension-induced cardiac damage. The injected Treg that they harvested from donor mice into recipient mice were infused with angiotensin II, a blood pressure-raising peptide. The Tregs had no influence on the blood pressure response to angiotensin II. Nonetheless, cardiac enlargement, fibrosis, and inflammation was sharply reduced by Treg treatment. Dr. Heda Kvakan and Dr. Dominik N. Müller at the Experimental and Clinical Research Center at the Max Delbrück Center do not intend Treg as a therapy. (Circulation, June 9, 2009).

    The researchers transferred Treg cells into mice. These cells normally keep the immune system in balance. If the number of Treg cells is reduced or their function impaired, the immune system gets out of balance and, rather than recognizing and destroying bacteria or viruses, the immune cells attack body tissue or organs instead. Autoimmune diseases, such as diabetes type I or Multiple sclerosis, result from the malfunctioning of the immune system.

    Aside from its physiological role in maintaining blood pressure, it has long been known that the hormone angiotensin II plays a pivotal role in the onset of hypertension and in subsequnt hypertensive organ damage, e.g. cardiac hypertrophy.

    Angiotensin II also has proinflammatory properties and actives the cells of the immune system. The activation of these cells also seems to have a major part in Angiotension II-induced target organ damage. The researchers wanted to know if the suppression of activated immune cells by Treg cells could reduce cardiac damage.

    And indeed, hypertensive mice that had received Treg cells, exhibited less cardiac damage. "Hypertrophy and the thickening of the cardiac walls were reduced, also fibrosis and arrhythmia", Dr. Kvakan explains. The Treg cells had brought the immune cells under their control.

    The work of Dr. Kvakan and Dr. Müller is the first study to examine the role of immunosuppressive Treg cells in the pathogenesis of hypertensive target organ damage. They conclude that hypertension-induced cardiac damage is partly due to immunological processes.

    No Therapy
    The two hypertension researchers make it clear that their experiments with Treg cells in mice are in no case suited for therapy in humans. One reason is that Treg cells are much more difficult to identify in humans than in mice. In addition, it is not known what side effects would occur in human patients following suppression of the immune system with Treg cells .

    Nevertheless, Dr. Kvakan and Dr. Müller point out that hypertension can be treated well today.

    It remains to be seen, if Treg cells will ever be used for short-time therapy. However, perhaps the body's own Treg could be recruited as a treatment.

    *Regulatory T Cells Ameliorate Angiotensin II-Induced Cardiac Damage
    Heda Kvakan, MD; Markus Kleinewietfeld, PhD; Fatimunnisa Qadri, PhD; Joon-Keun Park, PhD; Robert Fischer, MD; Ines Schwarz, MS; Hans-Peter Rahn, PhD; Ralph Plehm, MS; Maren Wellner, PhD; Saban Elitok, MD; Petra Gratze, MD; Ralf Dechend, MD; Friedrich C. Luft, MD; Dominik N. Muller, PhD
    Received November 2, 2008; accepted April 7, 2009.
    From the Franz Volhard Clinic, HELIOS Clinic Berlin-Buch, Berlin (H.K., S.E., P.G., R.D., F.C.L.); Max-Delbruck Center for Molecular Medicine
    and Experimental and Clinical Research Center, Berlin (H.K., M.K., F.Q., R.F., I.S., H.-P.R., R.P., M.W., F.C.L., D.N.M.); and Medical School Hannover, Hannover (J.-K.P.), Germany.
    The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.108.832782/DC1.

    Barbara Bachtler
    Press and Public Affairs
    Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
    Robert-Rössle-Straße 10; 13125 Berlin; Germany
    Phone: +49 (0) 30 94 06 - 38 96
    Fax: +49 (0) 30 94 06 - 38 33
    e-mail: presse@mdc-berlin.de
    http://www.mdc-berlin.de/


    More information:

    http://www.mdc-berlin.de/en/news/2008/20081022-donor_cells_for_immune_therapy/in...


    Images

    Criteria of this press release:
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).