idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/21/2009 11:52

MDC Researchers Discover Molecule Responsible for Axonal Branching

Barbara Bachtler Presse- und Öffentlichkeitsarbeit
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

    The human brain consists of about 100 billion (1011) neurons, which altogether form about 100 trillion (1014) synaptic connections with each other. A crucial mechanism for the generation of this complex wiring pattern is the formation of neuronal branches. The neurobiologists Dr. Hannes Schmidt and Professor Fritz G. Rathjen at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered a molecule that regulates this vital process. At the same time they have succeeded in elucidating the signaling cascade induced by this molecule (PNAS, Early Edition, 2009, doi:10.1073)*.

    Through the ramification of its fiber-like axon, a single neuron can send branches and thus transmit information into several target areas at the same time. In principle, neurobiologists distinguish between two kinds of axonal branching: branching of the growth cone at the tip of an axon and the sprouting of collaterals (interstitial branching) from the axon shaft.

    Both forms of axonal branching can be observed in sensory neurons, which transmit the sensation of touch, pain and temperature, among others. When the axons of these neurons reach the spinal cord, their growth cones first split (bifurcate) and consequently the axons divide into two branches growing in opposite directions. Later new branches sprout from the shaft of these daughter axons which penetrate the gray matter of the spinal cord.

    Through investigations on sensory neurons, Dr. Hannes Schmidt and his colleagues were able to identify a protein which triggers the splitting of the growth cone of the sensory axons: the peptide CNP (the abbreviation stands for C-type natriuretic peptide). In transgenic mice the scientists were able to show that CNP is formed in the spinal cord precisely when sensory neurons grow into it. In the absence of CNP bifurcation can no longer occur which results in reduced neuronal connectivity in the spinal cord.

    The new findings supplement earlier discoveries of the research group of Professor Rathjen according to which a cGMP-signaling cascade is responsible for the bifurcation of sensory axons. When CNP binds to its receptor Npr2 (natriuretic peptide receptor 2) on the surface of the axons, this signaling cascade is set in motion, which in turn induces the formation of the secondary messenger molecule cGMP. This messenger molecule then activates the protein kinase cGKI (cGMP-dependent protein kinase I), which can switch on and off a whole series of target proteins. The cytoskeleton of the neurons is thus altered in such a way that their growth cone splits into two daughter axons.

    Next, the researchers want to identify these target proteins. Further analyses should clarify whether the cGMP signaling cascade likewise regulates the branching of other axon systems and whether this impacts the sensation of pain.

    *C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons
    Author affiliation: Hannes Schmidta, Agne Stonkutea, René Jüttnera, Doris Koeslingb, Andreas Friebeb,c, Fritz G. Rathjena
    a Department of Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin
    b Institute for Pharmacology and Toxicology, Ruhr University Bochum, D-44780 Bochum
    c Present address: Institute for Physiology I, University of Würzburg, Röntgenring 9, D-97070 Würzburg
    Correspondence to F.G. Rathjen: rathjen@mdc-berlin.de

    Barbara Bachtler
    Press and Public Affairs
    Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
    Robert-Rössle-Straße 10
    13125 Berlin, Germany
    Phone: +49 (0) 30 94 06 - 38 96
    Fax: +49 (0) 30 94 06 - 38 33
    e-mail: presse@mdc-berlin.de
    http://www.mdc-berlin.de/


    More information:

    http://www.mdc-berlin.de/en/research/research_teams/developmental_neurobiology/P...


    Images

    Schematic representation of a sensory neuron. When the axon of the sensory neuron grows into the gray matter of the spinal cord, two types of branching can be observed: At the dorsal root entry zone the axon shaft divides into two branches (1), which continue to grow on the surface of the spinal cord in opposite directions. Out of these branches collaterals then sprout in several places (2) thus enabling the transmission of a signal to several target cells.
    Schematic representation of a sensory neuron. When the axon of the sensory neuron grows into the gra ...
    (Drawing: Hannes Schmidt / Copyright: MDC)
    None

    Dorsal view of the spinal cord with single visible sensory neurons A) Wild-type with bifurcations marked by arrows and B) CNP knock-out mouse.
    Dorsal view of the spinal cord with single visible sensory neurons A) Wild-type with bifurcations ma ...
    (Photo: Hannes Schmidt / Copyright: MDC)
    None


    Criteria of this press release:
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Schematic representation of a sensory neuron. When the axon of the sensory neuron grows into the gray matter of the spinal cord, two types of branching can be observed: At the dorsal root entry zone the axon shaft divides into two branches (1), which continue to grow on the surface of the spinal cord in opposite directions. Out of these branches collaterals then sprout in several places (2) thus enabling the transmission of a signal to several target cells.


    For download

    x

    Dorsal view of the spinal cord with single visible sensory neurons A) Wild-type with bifurcations marked by arrows and B) CNP knock-out mouse.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).