idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/23/2010 19:00

Plant growth hormones: antagonists cooperate

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves and buds, are in fact more closely interwoven than previously assumed. Scientists from Heidelberg, Tübingen (Germany) and Umea (Sweden) made this surprising discovery in a series of complex experiments using thale cress (Arabidopsis thaliana), a biological reference organism. The international team of researchers, led by Prof. Dr. Jan Lohmann, stem cell biologist at Heidelberg University, have now published their results in the scientific journal “Nature”.

    Embargo time: 23 June 2010, 1800 London time

    Press Release
    Heidelberg, 23 June 2010

    Plant growth hormones: antagonists cooperate
    Stem cell researchers from Heidelberg and Tübingen elucidate complex interaction between auxin and cytokinin

    The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves and buds, are in fact more closely interwoven than previously assumed. Scientists from Heidelberg, Tübingen (Germany) and Umea (Sweden) made this surprising discovery in a series of complex experiments using thale cress (Arabidopsis thaliana), a biological reference organism. The international team of researchers, led by Prof. Dr. Jan Lohmann, stem cell biologist at Heidelberg University, have now published their results in the scientific journal “Nature”.

    All the above-ground parts of a plant – leaves, buds, stems and seeds – ultimately arise from a small tissue at the shoot tip, which contains totipotent stem cells. Since plant stem cells remain active over the entire life of the organism, plants, unlike animals, are able to grow and develop new organs over many decades. On the periphery of the tip, auxin triggers cells to leave the pool of stem cells, differentiate and form organs like leaves and buds. Cytokinin stimulates stem cells to divide and proliferate; it maintains the number of cells and thus the plant’s growth potential.

    Some of the genetic factors involved in cytokinin’s effect on plant growth were already known. In the thale cress experiments, which concentrated on the growth zone at the tip of the shoot, Lohmann and his team now studied the role of auxin in the interplay of the two hormones. It turns out that auxin directly interferes with a feedback loop involving two genes activated by cytokinin – ARR7 and ARR15 – which limit the effect of cytokinin. Auxin suppresses these two genes, thereby boosting the effect of cytokinin.

    “Auxin acts to support the pool of stem cells”, explains Prof. Lohmann. “When it triggers cells at the periphery of the growth zone to form organs, it still needs to ensure that enough stem cells are supplied.” This keeps the number of stem cells from falling below a critical minimum, which is key for plant growth and survival. “We’re gradually beginning to understand how hormonal and genetic factors are interwoven to maintain the activity of the growth zone. We now know that hormones and genes interact in multiple ways, each one affecting the other. There are no solitary factors.”

    In addition to Jan Lohmann, Zhong Zhao and Andrej Miotk from the Department of Stem Cell Biology at the Institute of Zoology at Heidelberg University, the team includes Stig U. Andersen and Sebastian J. Schultheiss from the Max Planck Institute for Developmental Biology and the Friedrich Miescher Laboratory in Tübingen, as well as Karin Ljung and Karel Dolezal of Sweden’s Umea Plant Science Center.

    Original publication:
    Z. Zhao, S.U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S.J. Schultheiss, J.U. Lohmann: Hormonal control of the shoot stem-cell niche, Nature (24 June 2010), doi: 10.1038/nature09126

    Contact:
    Prof. Dr. Jan Lohmann
    Institute of Zoology
    Phone: +49 6221 54-6269
    jlohmann@meristemania.org


    Images

    Optical section through the Arabidopsis growth zone. The distribution of an essential regulatory factor is shown in green. Auxin and cytokinin molecules are shown in green and red, respectively.
    Optical section through the Arabidopsis growth zone. The distribution of an essential regulatory fac ...
    Illustration: Jan Lohmann, Universität Heidelberg
    None

    Growth defects caused by the inactivation of ARR7 and ARR15 genes. Left: control plant. Right: plant after inactivation of the two genes. In the bottom part of the illustration, scanning electron micrographs of the corresponding growth zones are shown. At centre is the stem cell zone, where new buds are being formed on the periphery.
    Growth defects caused by the inactivation of ARR7 and ARR15 genes. Left: control plant. Right: plant ...
    Illustration: Jan Lohmann, Universität Heidelberg
    None


    Criteria of this press release:
    Biology
    transregional, national
    Research results
    English


     

    Optical section through the Arabidopsis growth zone. The distribution of an essential regulatory factor is shown in green. Auxin and cytokinin molecules are shown in green and red, respectively.


    For download

    x

    Growth defects caused by the inactivation of ARR7 and ARR15 genes. Left: control plant. Right: plant after inactivation of the two genes. In the bottom part of the illustration, scanning electron micrographs of the corresponding growth zones are shown. At centre is the stem cell zone, where new buds are being formed on the periphery.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).