idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/10/2010 15:12

Neurone sind schnelle Rechenkünstler

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Wissenschaftler entdecken neue Eigenschaften von Nervenzellen durch Computersimulation

    Wissenschaftler aus Deutschland und Japan haben den Grund dafür entdeckt, wieso Nervenzellen durch schwache elektrische Impulse kommunizieren. Hierdurch kann das Gehirn Informationen viel schneller verarbeiten als bislang angenommen. Und nicht nur das: Bereits einzelne Neurone sind in der Lage zu multiplizieren – der Schlüssel zu noch komplexeren Rechenleistungen.

    Nervenzellen kommunizieren durch elektrische Impulse, die „Aktionspotentiale“. Jahrzehntelang herrschte die Meinung vor, dass ein Neuron die bei ihm eintreffenden Impulse einfach aufsummiert und selbst ein Signal aussendet, sobald ein bestimmter Schwellenwert überschritten ist. Dr. Moritz Helias und Prof. Dr. Markus Diesmann vom RIKEN Brain Science Institute (Japan) sowie Dr. Moritz Deger und Prof. Dr. Stefan Rotter vom Bernstein Center Freiburg sind nun als erste in der Lage zu erklären, was genau in den entscheidenden Momenten geschieht, bevor eine Nervenzelle einen solchen Impuls erzeugt. Ihre Ergebnisse haben sie in der aktuellen Ausgabe von PLoS Computational Biology veröffentlicht.

    Die Wissenschaftler machten ihre Entdeckung mithilfe von Simulationen, die auf Hochleistungscomputern liefen. Das perfekte Sinnbild hierfür fanden sie jedoch in der Beschaulichkeit japanischer Gärten: Das „shishi odoshi“, ein Bambusrohr, das an einer Seite offen ist und nach unten kippt, sobald sich eine bestimmte Menge Regenwasser in ihm gesammelt hat. Genauso, wie ein einziger Regentropfen das Rohr letztendlich kippen lässt, kann ein einzelner elektrischer Puls im Neuron schließlich ein Aktionspotential auslösen.
    Allerdings gleichen die Nervenzellen im Gehirn einem riesigen Bambuswald und die zwischen ihnen laufenden Impulse einem mächtigen Gewitter. Helias und Kollegen fanden nun eine exakte mathematische Theorie für die Beschreibung dieser Vorgänge, die den impulsartigen Eingang nur dann berücksichtigen muss, wenn das Neuron selbst kurz davor ist, einen elektrischen Impuls auszusenden.

    Mithilfe dieser Theorie können die Wissenschaftler nicht nur erklären, wieso Nervenzellen Informationen viel schneller verarbeiten als bislang angenommen. Sie fanden auch heraus, dass Neurone eintreffende Impulse nicht bloß summieren: Im entscheidenden Moment können die Zellen multiplizieren. Die Verfügbarkeit dieser Rechenart, so die Forscher, erklärt erstmals, wie das Gehirn schwierige interne Berechnungen ausführen kann. Diese Einsicht kann in Zukunft auch als Inspiration für die Prozessorarchitekturen der nächsten Computergeneration dienen.

    Helias M, Deger M, Rotter S, Diesmann M (2010): Instantaneous Non-Linear
    Processing by Pulse-Coupled Threshold Units. PLoS Computational Biology 6(9): e1000929.
    http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000929

    Kontakt:

    Prof. Dr. Stefan Rotter
    Bernstein Center Freiburg
    Tel.: 0761 203 9316
    Fax: 0761 203 9559
    stefan.rotter@biologie.uni-freiburg.de
    www.bcf.uni-freiburg.de


    More information:

    http://www.bcf.uni-freiburg.de
    http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000929


    Images

    Criteria of this press release:
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).