idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/28/2010 23:00

Forscher zeigen, wie Nervenzellen lernen

Frank Luerweg Abteilung Presse und Kommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Ein Muskel wird kräftiger, wenn man ihn regelmäßig nutzt. Ähnlich sieht es im Gehirn aus: Nervenzellen werden umso kontaktfreudiger, je häufiger sie aktiv sind. Hirnforscher der Universität Bonn haben nun herausgefunden, welche Prozesse bei diesem Trainingseffekt eine wesentliche Rolle spielen. Die Ergebnisse erscheinen am 29.9. im Journal of Neuroscience (doi: 10.1523/JNEUROSCI.1847-10.2010).

    Unser Gehirn ist kein fest verdrahteter Computer - wenn es so wäre, könnten wir nicht lernen. Beispielsweise werden häufig genutzte Signalwege immer weiter ausgebaut. Eine wichtige Rolle spielen dabei die Synapsen; das sind die Kontaktstellen zwischen zwei Nervenzellen.

    An den Synapsen wird das elektrische Signal von der einen zur anderen Zelle weitergereicht. Mehr noch: Häufig genutzte Synapsen funktionieren wie eine Art Verstärker. Selbst sehr schwache Eingangssignale können bei ihnen zu einer starken Erregung der Nachbarzelle führen.

    Diese Fähigkeit bekommen Synapsen jedoch nicht in die Wiege gelegt - sie müssen sie erlernen. Die Bonner Hirnforscher haben diesen Lernprozess genauer unter die Lupe genommen. Dabei konnten sie erstmals nachweisen, welche wichtige Rolle der Zellkörper dabei spielt.

    Eine Synapse besteht im Prinzip aus einer Zuleitung (dem Axon), die durch einen schmalen Spalt von einer ableitenden Faser (dem Dendriten) getrennt ist. Jeder elektrische Reiz läuft vom Zellkörper über das Axon bis zum synaptischen Spalt. Dort führt er zur Ausschüttung chemischer Botenstoffe. Diese durchqueren den Spalt und docken an den Dendriten an. Der Dendrit generiert als Reaktion ein elektrisches Signal und leitet es weiter.

    Wie viel Botenstoffe an der Synapse ausgeschüttet werden, hängt von ihrem „Trainingszustand“ ab: Bei häufiger Reizung kann sie so umgebaut werden, dass sie auf einen Schlag große Mengen dieser Neurotransmitter freisetzen kann. „Wir konnten nun erstmals zeigen, dass für den Umbau der Synapse nicht nur die regelmäßige lokale Stimulierung verantwortlich ist“, sagt Professor Dr. Heinz Beck von der Uni Bonn. „Er hängt auch ganz entscheidend von der Reizung des einige Millimeter entfernten Zellkörpers ab.“

    Es ist dem Neurowissenschaftler zusammen mit seinen Kollegen gelungen, ausschließlich den Zellkörper oder alternativ ausschließlich die Synapse zu reizen. In beiden Fällen beobachteten die Forscher keinen nachhaltigen Trainingseffekt. Anders war es, wenn sowohl Zellkörper als auch Synapse regelmäßig elektrisch gereizt wurden: Die Kontaktfreude der Nervenzelle nahm dann dauerhaft zu.

    Der Zellkörper enthält unter anderem das genetische Material der Nervenzelle. Die Forscher vermuten, dass durch die regelmäßige elektrische Reizung gezielt Erbinformationen eingeschaltet werden. Der Zellkörper produziert dann vermehrt Proteine, die für die synaptische Funktion wichtig sind. Diese Proteine gelangen dann über eine Art „Schienennetz“ innerhalb der Zelle zur Synapse.

    „Wir haben diese Theorie überprüft, indem wir das Schienennetz zerstört haben“, erläutert Beck. Mit dem erwarteten Ergebnis: „Die Synapsen büßten daraufhin ihre Lernfähigkeit ein.“ Die Wissenschaftler wollen nun herausfinden, welche Proteine aus dem Zellkörper für den Trainingseffekt verantwortlich sind.

    Kontakt:
    Prof. Dr. Heinz Beck
    Life&Brain-Zentrum der Universität Bonn
    Telefon: 0228/6885-270
    E-Mail: Heinz.Beck@ukb.uni-bonn.de


    Images

    Criteria of this press release:
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).