idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/05/2010 10:33

Neuartige Fenster mit Energiespar-Effekt

Robert Emmerich Stabsstelle Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Gebäudeverglasungen oder Fenster, die ihre Lichtdurchlässigkeit und Farbe je nach Sonneneinstrahlung verändern: Damit ließe sich Energie sparen. Im Sommer würden solche Scheiben die Wärmestrahlung von draußen besser abhalten, so dass zum Beispiel in Bürogebäuden weniger Klimatisierung nötig wäre. Und im Winter könnten sie den Wärmeverlust aus geheizten Räumen deutlich verringern. An der Realisierung solcher Fenster wirken Forscher der Uni Würzburg mit.

    Verglasungen, die ihre Farbe ändern, sind industriell bereits herstellbar. So gibt es zum Beispiel Rückspiegel im Auto, die sich automatisch verdunkeln, wenn Licht auf ihre Sensoren fällt. Der Fahrer wird dann nicht geblendet.

    „Der Aufbau der bislang realisierten Produkte ist aber kompliziert, die Fertigung aufwändig und teuer“, sagt Professor Dirk Kurth vom Lehrstuhl für Chemische Technologie der Materialsynthese an der Uni Würzburg. Zudem funktioniere die Technik für großflächige Verglasungen bis heute nicht richtig: Die Scheiben werden schnell trübe oder fleckig – eine Folge ihres komplizierten Aufbaus aus mindestens fünf unterschiedlichen Materialschichten.

    „Smart Windows“ mit elektrisch schaltbarer Tönung

    Mit neuartigen Materialien – Metallo-Polyelektrolyten – wollen Wissenschaftler das System nun vereinfachen, besser machen und die Fertigungskosten erheblich senken. Ihr Ziel heißt „Smart Windows“, neue Fenstertypen mit einer farbigen Tönung, die sich elektrisch schalten lässt. Das Würzburger Fraunhofer-Institut für Silicatforschung und Professor Kurth haben hierzu ein Verbundprojekt initiiert, das vom Bundesforschungsministerium mit 1,1 Millionen Euro gefördert wird.

    Die Herstellung der „Smart Windows“ ist relativ einfach: Es genügen zwei Glasscheiben, bei denen die einander zugewandten Seiten mit einer dünnen, transparenten Elektrode bedeckt sind. Darauf wird eine hauchfeine Schicht aus Metallo-Polyelektrolyten (MEPE) aufgebracht. Das geht verhältnismäßig simpel durch Eintauchen in eine wässrige MEPE-Lösung. Die Scheiben werden dann aufeinandergelegt und die dazwischen befindliche, störende Luftschicht durch das Einfüllen eines sirupartigen, neutralen Materials verdrängt. Zum Schluss wird das System abgedichtet.

    Metall-Ionen sorgen für den Farbwechsel

    Wodurch zeichnen sich die Metallo-Polyelektrolyte aus, die solche neuartigen Fenster ermöglichen sollen? Es handelt sich um lange Molekülketten, in denen einzelne organische Bausteine, so genannte Terpyridine, durch Metall-Ionen miteinander verknüpft sind.

    Die Metall-Ionen sind für die Farbe des Materials verantwortlich und lassen sich elektrisch schalten. Wenn sie Elektronen aufnehmen oder abgeben, entsteht oder verblasst die Farbe; die Änderungen sind umkehrbar. Geben zum Beispiel zweiwertige Eisen-Ionen Elektronen ab, wird Blau zu Farblos. Andere Metall-Ionen sorgen für andere Farben: Mit Cobalt ergibt sich ein rötlicher, mit Nickel ein orangefarbener Ton.
    Farbe und Transparenz der Fenster lassen sich verändern, indem man die Metallo-Polyelektrolyte über die Elektrode mit niedrigen Spannungen von 1 bis 1,5 Volt schaltet. Einfache Batterien genügen dafür. Dank der speziellen Eigenschaften der MEPE kann die Grundfarbe der Verglasung variiert werden. Es ist auch möglich, in einem Fenster verschiedene Metall-Ionen einzusetzen und so mehrere Farben durchzuschalten. „Mal rot, mal blau – das wäre zum Beispiel für Firmen interessant, die auf den Glasflächen ihres Gebäudes Werbebotschaften transportieren wollen“, sagt Kurth.

    Synthese der MEPE an der Universität

    Die Arbeitsgruppe des Professors synthetisiert die Metallo-Polyelektrolyte, die Kooperationspartner analysieren sie: Welche Kombinationen mit welchen Metall-Ionen eignen sich am besten? Wie erfolgt im Fenster der Elektronentransfer von der Elektrode in die metallorganische Schicht? Was genau passiert in den MEPES, wenn sie elektrisch geschaltet werden?

    Solche grundlegenden Untersuchungen sind nötig, um das System der „Smart Windows“ genau zu verstehen. Nur dann lassen sich ihnen optimale Tönungseigenschaften, eine lange Lebensdauer, kurze Schaltzeiten und andere Eigenschaften verleihen. Ziel der Wissenschaftler: Nach zwei Jahren wollen sie ein Demonstrations-Fenster realisiert haben, an dem zum Beispiel Interessenten aus der Industrie die Vorzüge der Technik sehen können.

    Spannend auch für Studierende

    An der Entwicklung der neuartigen Fenster können auch Studierende mitwirken, indem sie zum Beispiel ihre Bachelor- oder Masterarbeiten über das Thema schreiben. Diese Möglichkeit bietet sich in den Studiengängen Technologie der Funktionswerkstoffe (TecFun) und Chemie.

    Projektpartner im Smart-Windows-Verbund

    Die Kooperationspartner im Verbundprojekt „SmartWin-MEPE“ sind: Professor Dirk Kurth vom Lehrstuhl für Chemische Technologie der Materialsynthese, das Fraunhofer-Institut für Silicatforschung (ISC) in Würzburg, das Institut für Werkstoffe und Elektrotechnik am Karlsruher Institut für Technologie sowie die Bundesanstalt für Materialprüfung (Berlin). Sprecher des Verbunds ist Dieter Sporn vom ISC Würzburg.

    Kontakt

    Dieter Sporn, Fraunhofer-Institut für Silicatforschung Würzburg, Sprecher des Forschungsverbunds SmartWin-MEPE, T (0931) 4100-400, sporn@isc.fraunhofer.de

    Prof. Dr. Dirk Kurth, Lehrstuhl für Chemische Technologie der Materialsynthese, Universität Würzburg, T (0931) 31-82631, dirk.kurth@matsyn.uni-wuerzburg.de


    Images

    Die Farben verschiedener Metallo-Polyelektrolyte variieren in Abhängigkeit vom Metall-Ion, das sie enthalten. Oben ist Eisen im Spiel, in der Mitte Ruthenium, unten Cobalt.
    Die Farben verschiedener Metallo-Polyelektrolyte variieren in Abhängigkeit vom Metall-Ion, das sie e ...
    Source: Foto: Dirk Kurth

    Aufbau von Metallo-Polyelektrolyten: Bringt man Terpyridin-Moleküle und Metall-Ionen in Wasser zusammen, entstehen von alleine lange Ketten. Die Verknüpfung zwischen den Terpyridinen kann starr oder flexibel sein und auch funktionelle Gruppen enthalten.
    Aufbau von Metallo-Polyelektrolyten: Bringt man Terpyridin-Moleküle und Metall-Ionen in Wasser zusam ...
    Source: Grafik: Dirk Kurth


    Criteria of this press release:
    Chemistry, Construction / architecture, Energy, Materials sciences
    transregional, national
    Research projects
    German


     

    Die Farben verschiedener Metallo-Polyelektrolyte variieren in Abhängigkeit vom Metall-Ion, das sie enthalten. Oben ist Eisen im Spiel, in der Mitte Ruthenium, unten Cobalt.


    For download

    x

    Aufbau von Metallo-Polyelektrolyten: Bringt man Terpyridin-Moleküle und Metall-Ionen in Wasser zusammen, entstehen von alleine lange Ketten. Die Verknüpfung zwischen den Terpyridinen kann starr oder flexibel sein und auch funktionelle Gruppen enthalten.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).