idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/29/2010 10:53

Metallische Schmelzen erstarren zu massivem Glas – Forscher entdecken einheitliches Muster

Friederike Meyer zu Tittingdorf Pressestelle der Universität des Saarlandes
Universität des Saarlandes

    Bei der Herstellung von Glas wird flüssige Silikatschmelze verwendet. Wenn man diese abkühlt, wird sie immer dickflüssiger und „gefriert“ dann zu Glas. Schon seit langem ist bekannt, dass dies auch bei Metallen möglich ist. Aber erst heute kann man massive metallische Gläser herstellen. Saarbrücker Forscher haben jetzt entdeckt, dass auch Metallkristalle beim Abkühlen einfrieren und sich dabei genauso verhalten wie Silikatschmelzen oder metallische Gläser. Die Wissenschaftler sehen darin ein einheitliches Muster, wie sich Flüssigkeiten und Kristalle beim Abkühlen selbst ordnen und einfrieren. Die Forschungsergebnisse haben sie in der aktuellen Ausgabe von „Nature Physics“ veröffentlicht.

    Wenn bei der Glasherstellung der Grundstoff, der Quarzkristall, geschmolzen wird, entstehen im Inneren ungeordnete Strukturen. Wird die Flüssigkeit dann abgekühlt, beginnen sich die Atome zu ordnen, jedoch nicht so weit, dass wieder regelmäßige Kristallstrukturen entstehen. „In diesem Zustand, den Materialforscher als unterkühlte Schmelze bezeichnen, ist das Material zähflüssig und kann zum Beispiel beim Glasblasen sehr gut geformt werden. Durch weiteres Abkühlen gefriert die unterkühlte Schmelze dann zu einem Quarzglas, das auch als Silikatglas bezeichnet wird. Man nennt dieses Einfrieren den Glasübergang“, erläutert Ralf Busch, Professor für metallische Werkstoffe der Universität des Saarlandes.

    Glas herzustellen ist aber nicht nur mit Quarzkristall möglich. Das Verfahren ist auch von verschiedenen Kombinationen von Metallen, den Legierungen, bekannt, ist dort aber viel schwieriger umzusetzen. „Bereits vor 50 Jahren hat man entdeckt, wie man metallische Gläser erzeugen kann. Man brauchte jedoch extrem hohe Abkühlraten von bis zu einer Million Grad pro Sekunde und konnte deshalb nur dünne Folien herstellen“ sagt der Materialforscher. In den letzten 20 Jahren habe man aber gelernt, bis zu fünf verschiedene Metalle so zu mischen, dass man diese Legierungsschmelze nicht mehr schnell abkühlen muss, um metallisches Glas zu bilden. Diese neuen Legierungen lassen sich wie Silikate oder Kunststoffe als zähe Flüssigkeit leicht verarbeiten und sind als Glas fester als Stahl. Busch erklärt dieses Phänomen so: „Wir haben erkannt, dass Mischungen aus großen und kleinen Metallatomen zähflüssig sind und viel langsamer kristallisieren. Dadurch kann man heute bis zu mehrere Zentimeter dicke metallische Massivgläser herstellen, die sich als Konstruktionswerkstoff eignen.“

    Eine Silikatschmelze ist bereits am Schmelzpunkt zähflüssig wie Honig. Das liegt daran, dass sich die Atome in ihr langsam bewegen, weshalb sie auch sehr langsam kristallisiert. Man nennt sie deshalb eine „starke“ Flüssigkeit. Viele Flüssigkeiten sind an ihrem Schmelzpunkt jedoch sehr dünnflüssig. Hierzu gehören Wasser und auch alle reinen Metalle. Die Atome bewegen sich in diesen Flüssigkeiten schnell, so dass bei wenigen Grad unter dem Schmelzpunkt Kristallisation einsetzt. Aufgrund ihrer geringen Tendenz zur Glasbildung nennt man sie „fragil“. „Wenn man jedoch Wasser auf eine ganz bestimmte Weise kühlt und verhindert, dass sich dabei Eiskristalle bilden, wird weit unter dem eigentlichen Gefrierpunkt aus dem dünnflüssigen, fragilen Wasser ein dickflüssiges, starkes Wasser, dass dann bei noch tieferen Temperaturen zu einem glasartigen Wasser einfriert“, erläutert Ralf Busch.

    Die Materialforscher in Saarbrücken fanden heraus, dass auch die glasbildenden Metallschmelzen einen solchen Übergang von einem dünnflüssigen zu einem dickflüssigen Zustand aufweisen. Der Grund für den Übergang ist, dass sich die Atome in der Flüssigkeit ordnen, jedoch noch keine feste Kristallstruktur ausbilden. Die Wissenschaftler wollten nun wissen, ob dieser Übergang von der fragilen in eine starke Substanz ein generelles Phänomen ist, das in jeder Materie abläuft. Für die Publikation in „Nature Physics“ haben sie dafür eine Legierung aus Eisen und Kobalt unter die Lupe genommen. Diese hat zwar eine Kristallstruktur, aber auch hier organisieren sich die Atome von einem ungeordneten Mischkristall zu einem geordneten Kristall. Dieser Übergang ist theoretisch bereits gut verstanden.

    „Japanische Forscher hatten bei diesem Werkstoff schon vor rund 70 Jahren Effekte beobachtet, die sie damals nicht erklären konnten. Sie ähneln dem Einfrieren, das wir bei Flüssigkeiten am Glasübergang beobachten“, sagt Professor Busch. Sein Team hat daher gemeinsam mit Austen Angell, Glasforscher an der Arizona State University (USA), mit dieser Legierung experimentiert. Es stellte sich heraus, dass das Einfrieren in der Eisen-Kobalt Legierung genauso abläuft wie in den Silikatgläsern und ähnlich wie in glasbildenden Metallschmelzen. Dies erhellt zum einen, warum es heute möglich ist, metallische Massivgläser herzustellen. Zum anderen hat es theoretischen Konsequenzen, die die Autoren ausführlich in ihrem Artikel in „Nature Physics“ diskutieren.

    Diese grundlegende physikalische Arbeit ist vor dem Hintergrund zu sehen, dass mit den metallischen Massivgläsern („bulk metallic glasses“) ein neuer Konstruktionswerkstoff im Kommen ist. „Dieses Material ist fester als Stahl, aber so elastisch wie Kunststoff. Es ist also ein idealer Federwerkstoff. Metallisches Glas lässt sich dabei mit den gleichen Methoden wie Kunststoff verarbeiten, zum Beispiel durch Spritzguss oder durch Blasformen“, erläutert Professor Busch. Anwendungen sieht der Saarbrücker Wissenschaftler beispielsweise im Feinguss, bei mikromechanischen Bauteilen oder bei dünnen, hochfesten Gehäuseteilen für elektronische Geräte.

    Fragen beantwortet:

    Prof. Dr. Ralf Busch
    Lehrstuhl für metallische Werkstoffe
    Tel: 0681/302-3208
    Email: r.busch@mx.uni-saarland.de

    Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.


    More information:

    http://www.uni-saarland.de/fak8/lmw/
    http://www.uni-saarland.de/pressefotos


    Images

    Das Bild zeigt erstarrte Tropfen metallischer Massivgläser. Hierzu wurden die Metalle Zirkonium, Kupfer, Nickel, Aluminium und Niobium gemeinsam in einem Lichtbogenofen aufgeschmolzen. Beim Abkühlen kristallisieren sie nicht, sondern frieren zu einem Glas ein. Zum Größenvergleich liegt eine Anstecknadel mit dem Logo der Saar-Uni daneben.
    Das Bild zeigt erstarrte Tropfen metallischer Massivgläser. Hierzu wurden die Metalle Zirkonium, Kup ...
    Universität des Saarlandes
    None

    Ralf Busch, Professor für metallische Werkstoffe der Universität des Saarlandes
    Ralf Busch, Professor für metallische Werkstoffe der Universität des Saarlandes

    None


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Chemistry, Electrical engineering, Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Das Bild zeigt erstarrte Tropfen metallischer Massivgläser. Hierzu wurden die Metalle Zirkonium, Kupfer, Nickel, Aluminium und Niobium gemeinsam in einem Lichtbogenofen aufgeschmolzen. Beim Abkühlen kristallisieren sie nicht, sondern frieren zu einem Glas ein. Zum Größenvergleich liegt eine Anstecknadel mit dem Logo der Saar-Uni daneben.


    For download

    x

    Ralf Busch, Professor für metallische Werkstoffe der Universität des Saarlandes


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).