idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/10/2012 13:38

Sehkraft für blinde Moleküle - Chemiker versehen Neurorezeptor mit optischem Schalter

Luise Dirscherl Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Wenn Nervenzellen miteinander kommunizieren, mischen Neurorezeptoren an entscheidender Stelle bei der Reizleitung mit. Chemiker der Ludwig-Maximilians-Universität (LMU) München und der University of California in Berkeley konnten nun solch eine ursprünglich „blinde“ molekulare Maschine künstlich in einen Lichtrezeptor verwandeln. Dazu haben sie das Großmolekül, das im Normalfall auf den chemischen Botenstoff Acetylcholin anspringt, zusätzlich mit einem Schalter aus dem molekularen Baukasten versehen, der auf Licht reagiert. Mit diesem Konstrukt lasse sich nicht nur die spezifische Rolle der natürlichen Neurorezeptoren im Gehirn weiter aufklären, hofft Dirk Trauner, der maßgeblich an dem Projekt beteiligt ist. Womöglich, sagt der Professor für Chemische Biologie und Genetik an der LMU, ließen sich solche nun lichtempfindlichen Rezeptoren einmal einsetzen, um bei bestimmten Formen der Blindheit die Sehkraft wiederherzustellen (Nature Chemistry, 10.1.2012).

    Die sogenannten nikotinischen Acetylcholinrezeptoren, die Trauner und seine Kollegen in ihren Experimenten modifizierten, gehören zu den molekularen Maschinen, die zwischen chemischer und elektrischer Kommunikation der Nervenzellen vermitteln. Sie lassen sich im gesamten Nervensystem finden sowie an den motorischen Endplatten, den Verbindungsstellen zwischen Nerv und Muskel. Die Rezeptoren reichen als sogenannte Transmembranproteine durch die äußere Hülle der Nervenzellen. Docken an der Außenseite Moleküle des Botenstoffs Acetylcholin an, verändert sich die räumliche Struktur des Rezeptors. Es öffnen sich winzige Kanäle, durch die positiv geladene Ionen wie Natrium in die Zelle hineinströmen. Damit verschiebt sich die Ladungsverteilung zwischen Innen und Außen; diese Depolarisation lässt den elektrischen Reiz, das Aktionspotenzial, entstehen.

    Nicht zuletzt deshalb sind sie willkommene Objekte für einen Forschungsansatz, den Trauner „optochemische Genetik“ nennt: Er verbindet die künstliche Anpassung des Rezeptor-Eiweißes via Genmanipulation mit dem Ankoppeln eines künstlichen photosensitiven Schaltelements. Als Letzteres eignen sich beispielsweise chemische Verbindungen wie sogenannte Azobenzole. Sie ändern ihre Länge und räumliche Anordnung, wenn sie Licht bestimmter Wellenlängen ausgesetzt sind. An der charakteristischen Stickstoff-Stickstoff-Doppelbindung knicken sie gleichsam ab oder strecken sich wieder, je nachdem, mit welchem monochromatischen Licht sie bestrahlt werden. Um die Chemikalien aber an das Eiweiß anzufügen, damit sie nicht nur halten, sondern auch die molekulare Maschinerie in Gang setzen, haben Trauner und seine Kollegen eine Reihe der Proteinbausteine künstlich ausgetauscht. Dass die natürlich-künstlichen Hybride auch funktionieren, sich mit Violett- beziehungsweise Grünlicht also an- und ausstellen lassen, konnten die Chemiker schließlich in elektrophysiologischen Zellexperimenten nachweisen.

    Das Projekt wurde im Rahmen des Sonderforschungsbereiches (SFB) der Deutschen Forschungsgemeinschaft (DFG) gefördert, in dem es um „Bildung und Funktion neuronaler Schaltkreise in sensorischen Systemen“ geht. Trauner wurde 2010 zudem mit einem der millionenschweren Advanced Grants des Europäischen Forschungsrates (ERC) ausgezeichnet. Auch mit diesen Fördermitteln verfolgt er einen „photopharmakologischen“ Ansatz, der – so das Fernziel – den Verlust von Photorezeptor-Zellen, die häufigste Ursache der Blindheit, einmal kompensieren könnte. Trauner arbeitet an der Entwicklung hybrider Photorezeptoren. „Sie sollen die entsprechenden Neuronen im Auge für Licht ansprechbar machen – was im Tierversuch bereits prinzipiell gelungen ist“, so Trauner.

    Publikation:
    „Optochemical control of genetically targeted neuronal nicotinic acetylcholine receptors“;
    I. Tochitsky, M.R. Banghart, A. Mourot, J.Z. Yao, B. Gaub, R.H. Kramer, D. Trauner;
    Nature Chemistry, 10.1.2012;
    doi: 10.1038/NCHEM.1234

    Ansprechpartner:
    Prof. Dr. Dirk Trauner
    Department Chemie
    Tel.: 089 / 2180-77800
    Fax.: 089 / 2180-77972
    E-Mail: Dirk.Trauner@cup.uni-muenchen.de
    Web: http://www.cup.uni-muenchen.de/oc/trauner/index.html


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Medicine
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).