idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/12/2012 12:39

Zelluläre Signalprozesse besser verstehen

Dr. Julia Biederlack GB Unternehmenskommunikation
Charité-Universitätsmedizin Berlin

    Charité – Wissenschaftler entwickeln neues Verfahren

    Wissenschaftler der Charité – Universitätsmedizin Berlin und der amerikanischen Gesundheitsforschungsbehörde National Institutes of Health (NIH) haben ein realitätsnahes Modell zur Erklärung zellulärer Signalprozesse entwickelt. Dieses neue Verfahren soll nun zur systembiologischen Analyse der Funktion von Herzmuskelzellen und zur Modellierung bestimmter Daten aus Tumorgewebe von Lungenkrebspatienten eingesetzt werden. Die Ergebnisse der Arbeit sind in der aktuellen Ausgabe der Fachzeitschrift Nature Methods* veröffentlicht.

    Die Stoffwechsel- und Regulationswege der Zelle sind durch eine große Anzahl interagierender Komponenten gekennzeichnet. Um diese komplexen Systeme besser zu verstehen und Vorhersagen über das ganzheitliche Verhalten biologischer Systeme machen zu können, bedarf es der detaillierten mathematischen Beschreibung der zellulären Vorgänge. In ihrer Arbeit stellen die Wissenschaftler nun ein neuartiges Verfahren zur Modellierung und Simulation von zellulären Signalprozessen vor. Mit der beschriebenen Methode ist es erstmals möglich, dynamische biochemische und morphologische Veränderungen realistisch miteinander zu koppeln. Dies erlaubt es, aus Experimenten gewonnene biologische Erkenntnisse, beispielsweise über das Zusammenspiel einzelner Moleküle, realitätsnah in Computermodelle zu übersetzen. „Ein weiterer Vorteil unserer Methode ist die Anwenderfreundlichkeit der Software. Sie erlaubt es auch Medizinern und Biologen ohne mathematisch-physikalische Kenntnisse, komplexe biologische Modelle zu entwerfen oder zu modifizieren“, erläutert Dr. Frederick Klauschen vom Institut für Pathologie der Charite.

    Mit diesen Modellen können dann am Computer Experimente durchgeführt werden, die es den Wissenschaftlerinnen und Wissenschaftlern ermöglichen, Gedankenmodelle und Hypothesen über die Funktionsweise von physiologischen und pathologischen Prozessen zu testen. Beispielsweise kann man auf diese Weise nachvollziehen, was mit dem modellierten Signalnetzwerk in einer Zelle passiert, wenn man ein einzelnes Molekül verändert (mutiert).

    So kann das Verfahren in Zukunft einen wertvollen Beitrag zur „personalisierten Medizin“ leisten, indem es die Ergebnisse der molekularpathologischen Diagnostik in einen systembiologischen Ansatz integriert und so ein besseres Verständnis der pathologischen Veränderungen erlaubt.

    *Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-Schellersheim M. Computational modeling of cellular signaling processes embedded into dynamic spatial contexts.
    Nat Methods. 2012 Jan 29;9(3):283-9. doi:10.1038/nmeth.1861. PubMed PMID: 22286385.

    Kontakt:
    Dr. Frederick Klauschen
    Institut für Pathologie/CCM
    Charité – Universitätsmedizin Berlin
    t: +49 30 450 536 053
    frederick.klauschen[at]charite.de


    More information:

    http://www.nature.com/nmeth/journal/v9/n3/full/nmeth.1861.html - Link zur Publikation
    http://www.nature.com/nmeth/journal/v9/n3/covers/index.html - Coverbild Nature Methods


    Images

    Eine simulierte Zelle baut einen Kontakt mit einer benachbarten Zelle (nicht im Bild) auf. Die Simulation zeigt die dynamische Verteilung des den Zellkontakt vermittelnden Proteins E-cadherin auf der Zellmembran über 1h (blau: niedrige, rot: hohe Konzentration).
    Eine simulierte Zelle baut einen Kontakt mit einer benachbarten Zelle (nicht im Bild) auf. Die Simul ...

    None


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Medicine
    transregional, national
    Research results
    German


     

    Eine simulierte Zelle baut einen Kontakt mit einer benachbarten Zelle (nicht im Bild) auf. Die Simulation zeigt die dynamische Verteilung des den Zellkontakt vermittelnden Proteins E-cadherin auf der Zellmembran über 1h (blau: niedrige, rot: hohe Konzentration).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).