idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/11/2012 08:57

Verengte Blutgefässe: Basler und Genfer Forscher entwickeln Nanocontainer

lic. phil. Christoph Dieffenbacher Kommunikation & Marketing
Universität Basel

    Zur Behandlung verengter Blutgefässe bei Arteriosklerose haben Forscher der Universität und der Universitätskliniken Genf sowie der Universität Basel sogenannte Nanocontainer in Linsenform geschaffen. Diese Nanogefässe können Medikamente transportieren und sie an den Verengungen gezielt freisetzen. Damit lassen sich die Nebenwirkungen der bisherigen Behandlungen weitgehend vermeiden. Die Resultate wurden in der Fachzeitschrift «Nature Nanotechnology» online veröffentlicht

    Herz-Kreislauf-Erkrankungen, die durch Arteriosklerose verursacht werden, sind heute weltweit die häufigste Todesursache. In der Schweiz sterben jedes Jahr über 20’000 Menschen daran, was 37% aller Todesfälle entspricht. Bereits im jungen Erwachsenenalter entwickeln sich in den Blutgefässen Ablagerungen. Die entstehenden Verengungen werden in der Regel mit Medikamenten wie Nitroglycerin geweitet. Da sich diese aber auf das ganze Blutsystem auswirken, treten bei den heutigen Therapien massive Nebenwirkungen wie der Abfall des Blutdrucks auf.

    Mit den in Genf und Basel neu entwickelten Nanocontainern lässt sich die bisherige Behandlung von Grund auf umgestalten: Die intravenöse Injektion eines gefässerweiternden Medikaments beeinflusst nun lediglich die betroffenen Verengungen und nicht auch die übrigen Arterien und Venen. Damit wird das Absinken des Blutdrucks weitgehend verhindert, was während und nach einem Herzinfarkt gezielt zur angestrebten erhöhten Durchblutung des betroffenen Gefässes führt.

    Moleküle umgebaut: Linse statt Kugel

    Für ihre Entwicklung nutzen die Wissenschaflter die sogenannten Scherkräfte im Blutstrom aus, die an den Verengungen deutlich höher als in gesunden Blutgefässen sind. Ihre Nanocontainer bewegen sich frei durch den normalen Blutstrom, wobei sie sich durch die erhöhte Scherkraft an den verengten Stellen öffnen und ihren Inhalt, das Medikament, lokal freisetzen. Dafür änderten die Forscher die Zusammensetzung von natürlich vorkommenden Molekülen (Phospholipiden), indem sie die Ester-Bindungen durch Amide ersetzten. Die Moleküle werden danach hydratisiert und erhitzt, sodass sich eine «flüssige» Kugel aus Tausenden von ihnen bildet. Beim Abkühlen dieser Kugeln lassen sich Linsen erzeugen. Der verringerte Ordnungsgrad der Moleküle am Linsenäquator führt zu Sollbruchstellen, was die scherkraftinduzierte Medikamentenfreisetzung ermöglicht.

    Die Wissenschaftler, ein interdisziplinäres Team aus Medizinern, Physikern und Chemikern, hatten ein Herz-Kreislauf-System mit einer gesunden und einer verengten Arterie modelliert. Die neuartigen Nanocontainer wurden in dieses System injiziert und Proben genommen. Es zeigte sich, dass die Konzentration des Wirkstoffs an verengten Stellen signifikant höher war als in normalen Gefässen. Damit lassen sich die Effizienz und die lokale Dosis der Medikamente beträchtlich steigern. Dieser richtungsweisende Beitrag zur Nanomedizin eröffnet neue Behandlungsstrategien für die zahlreichen Herz-Kreislauf-Patienten.

    Originalbeitrag

    Margaret N. Holme, Illya A. Fedotenko, Daniel Abegg, Jasmin Althaus, Lucille Babel, France Favarger, Renate Reiter, Radu Tanasescu, Pierre-Léonard Zaffalon, André Ziegler, Bert Müller, Till Saxer and Andreas Zumbuehl
    Shear-stress sensitive lenticular vesicles for targeted drug delivery
    «Nature Nanotechnology» (published online 10 June 2012) | doi 10.1038/NNANO.2012.84

    Weitere Auskünfte

    - Prof. Dr. Bert Müller, Biomaterials Science Center der Universität Basel, Tel. +41 (0)61 265 96 60, E-Mail: bert.mueller@unibas.ch
    - Dr. Till Saxer, Kardiologie, Universitätsspitäler Genf, Tel. +41 (0)79 677 11 91, E-Mail: till.saxer@hcuge.ch
    - Dr. Andreas Zumbuehl, Departement für Organische Chemie, Universität Genf, Tel. +41 (0)22 379 67 19, E-Mail: andreas.zumbuehl@unige.ch


    More information:

    http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.84.html - Originalbeitrag


    Images

    Elektronenmikroskopie erlaubt die Abbildung der 100 bis 200 Nanometer grossen, linsenförmigen Nanocontainer. Das Modell links oben zeigt den reduzierten Ordnungsgrad am Äquator der Linse.
    Elektronenmikroskopie erlaubt die Abbildung der 100 bis 200 Nanometer grossen, linsenförmigen Nanoco ...

    None


    Criteria of this press release:
    Journalists, all interested persons
    Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Elektronenmikroskopie erlaubt die Abbildung der 100 bis 200 Nanometer grossen, linsenförmigen Nanocontainer. Das Modell links oben zeigt den reduzierten Ordnungsgrad am Äquator der Linse.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).