idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/15/2013 11:11

Inspired by deep sea sponges: Creating flexible minerals

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Scientists imitate the skeleton of natural sea sponges to produce a flexible mineral

    Scientists at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research (MPI-P) in Germany have created a new synthetic hybrid material with a mineral content of almost 90 percent, yet extremely flexible. They imitated the structural elements found in most sea sponges and recreated the sponge spicules using the natural mineral calcium carbonate and a protein of the sponge. Natural minerals are usually very hard and prickly, as fragile as porcelain. Amazingly, the synthetic spicules are superior to their natural counterparts in terms of flexibility, exhibiting a rubber-like flexibility. The synthetic spicules can, for example, easily be U-shaped without breaking or showing any signs of fracture This highly unusual characteristic, described by the German researchers in the current issue of Science, is mainly due to the part of organic substances in the new hybrid material. It is about ten times as much as in natural spicules.

    Spicules are structural elements found in most sea sponges. They provide structural support and deter predators. They are very hard, prickly, and even quite difficult to cut with a knife. The spicules of sponges thus offer a perfect example of a lightweight, tough, and impenetrable defense system, which may inspire engineers to create body armors of the future.

    The researchers led by Wolfgang Tremel, Professor at Johannes Gutenberg University Mainz, and Hans-Jürgen Butt, Director at the Max Planck Institute for Polymer Research in Mainz, used these natural sponge spicules as a model to cultivate them in the lab. The synthetic spicules were made from calcite (CaCO3) and silicatein-α. The latter is a protein from siliceous sponges that, in nature, catalyzes the formation of silica, which forms the natural silica spicules of sponges. Silicatein-α was used in the lab setting to control the self-organization of the calcite spicules. The synthetic material was self-assembled from an amorphous calcium carbonate intermediate and silicatein and subsequently aged to the final crystalline material. After six months, the synthetic spicules consisted of calcite nanocrystals aligned in a brick wall fashion with the protein embedded like cement in the boundaries between the calcite nanocrystals. The spicules were of 10 to 300 micrometers in length with a diameter of 5 to 10 micrometers.

    As the scientists, among them chemists, polymer researchers, and the molecular biologist Professor Werner E. G. Müller from the Mainz University Medical Center, also write in their Science publication, the synthetic spicules have yet another special characteristic, i.e., they are able to transmit light waves even when they are bent.

    Images:
    http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin1.jpg
    The fracture properties of spicules were probed with a micromanipulator and recorded in-situ with a scanning electron microscope for natural (i-vi) and synthetic spicules (vii-xii). The synthetic spicule (vii-xii) did not fracture even under extreme loading and deformation conditions (xi) that lead to plastic deformation.
    source: Work group Tremel, JGU

    http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_flexmin2.jpg
    The nanometer size of the calcite bricks facilitates bending of the synthetic spicules. The radius of curvature upon bending is very large compared to the size of the individual particles. This prevents a fracture of the brittle mineral bricks.
    source: Work group Tremel, JGU

    Publication:
    Filipe Natalio, Tomas P. Corrales, Martin Panthöfer, Dieter Schollmeyer, Ingo Lieberwirth, Werner E. G. Müller, Michael Kappl, Hans-Jürgen Butt and Wolfgang Tremel
    Flexible Minerals: Self-Assembled Calcite Spicules with Extreme Bending Strength
    Science, 15 March 2013
    DOI: 10.1126/science.1216260
    http://www.sciencemag.org/content/339/6125/1298

    Contact and further information:
    Professor Dr. Wolfgang Tremel
    Institute of Inorganic Chemistry and Analytical Chemistry
    Johannes Gutenberg University Mainz (JGU)
    D 55099 Mainz, GERMANY
    phone +49 6131 39-25135
    fax +49 6131 39-25605
    e-mail: tremel@uni-mainz.de
    http://www.ak-tremel.chemie.uni-mainz.de/index.php

    Professor Dr. Hans-Jürgen Butt
    Max Planck Institute of Polymer Research
    Ackermannweg 12
    D 55128 Mainz, GERMANY
    e-mail: butt@mpip-mainz.mpg.de
    http://www.mpic.de/en/research/biogeochemistry/group-jochum.html

    Related links:
    http://www.youtube.com/watch?v=XNleh50Ug_k


    More information:

    http://www.uni-mainz.de/presse/16247_ENG_HTML.php - press release ;
    http://www.sciencemag.org/content/339/6125/1298 - publication


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Materials sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).