idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/25/2013 13:07

Hannover Messe: Intelligente Drähte mit Gedächtnis bewegen Bauteile wie künstliche Muskeln

Claudia Ehrlich Pressestelle der Universität des Saarlandes
Universität des Saarlandes

    Sie können Fledermaus-Modelle mit naturgetreuem Flügelschlag zum „Leben erwecken“, Inhalationsgeräte derart präzise steuern, dass Wirkstoffe genau am Wirkort in der Lunge landen oder große Lasten geräuschlos heben und senken: So genannte Formgedächtnis-Drähte machen auf den Punkt genaue Bewegungsabläufe möglich. Die Forschergruppen um die Professoren Stefan Seelecke und Joachim Rudolph arbeiten an der Universität des Saarlandes gemeinsam an neuartigen Methoden, technische Bauteile präzise zu bewegen. Die Ingenieure suchen am saarländischen Forschungsstand vom 8. bis 12. April auf der Hannover Messe Partner für weitere Anwendungen (Halle 2, Stand C 40).

    Die Muskeln des Menschen reagieren auf Nervenimpulse, indem sie sich zusammenziehen. Dabei werden sie kürzer. Wenn sie sich wieder entspannen, gehen sie in ihre ursprüngliche Form zurück. Durch dieses Zusammenspiel von Nervensystem und An- und Entspannung der Muskulatur kann der Mensch alle nur erdenklichen Bewegungen vollführen.

    Nach ähnlichem Prinzip funktionieren die „intelligenten“ Drähte, an denen an der Saar-Universität die Teams der Professoren Stefan Seelecke und Joachim Rudolph forschen. Sie nutzen dabei die besonderen Eigenschaften von Drähten aus der Legierung Nickel-Titan (kurz NiTi). Diese Drähte haben die „Gabe“, sich an ihre alte Form zu „erinnern“, wenn sie verformt werden. Sie besitzen – wie die Forscher es nennen – ein Formgedächtnis: Werden die Drähte erwärmt, etwa indem ein elektrischer Strom durch sie fließt, ziehen sie sich zusammen und werden deutlich kürzer. Wird der Strom abgeschaltet, kühlen sie ab und werden wieder so lang wie zuvor. Diese Eigenschaften der NiTi-Legierung, die sie von gewöhnlichen Metallen unterscheidet, beruhen auf so genannten Phasenumwandlungen: Wird der Draht warm, wandelt sich seine Gitterstruktur um, was Auswirkungen auf seine Form hat.

    Am Lehrstuhl für Unkonventionelle Aktorik bringen Forscher um Professor Stefan Seelecke mit den Formgedächtnis-Drähten verschiedenste technische Bauteile in Bewegung. Die haarfeinen Drähte hieven schwere Gewichte, wenn sie unter Strom stehen.
    Mithilfe einer ausgeklügelten Steuerung lassen sich im Zusammenspiel mehrerer Drähte ganze Bewegungsabläufe nach festgelegter Choreographie ausführen. Dies demonstrieren die Forscher an Modellfledermäusen, denen sie Drähte als künstliche Muskeln verliehen haben, die die Flügelbewegungen echter Fledermäuse exakt nachahmen: ein Projekt, das Seelecke und sein Team für das North Carolina Museum of Natural Sciences bearbeitet haben, wo der Flügelschlag jetzt naturgetreu beobachtet werden kann (http://naturalsciences.org/nature-research-center/exhibits/first-floor – drittes Galeriebild). Eine weitere Anwendung findet die Technik in einem Inhalator, der Wirkstoffe zielgenau an den Wirkort in der Lunge bringt. Forschungen haben ergeben, dass Wirkstoffteilchen an bestimmten Stellen der Lunge landen, je nachdem wo genau sie aus dem Mundstück des Inhalators eingeatmet werden. Mit intelligenten Drähten kann ein Röhrchen im Mundstück genau in Position gebracht werden, so dass dieses „Wirkstoff-Geschütz“ seine Ladung gezielt in die Lunge „schießen“ kann.

    Zusammen mit Ingenieuren am Lehrstuhl für Systemtheorie und Regelungstechnik um Professor Joachim Rudolph befassen sich die Forscher damit, die Algorithmen so weiterzuentwickeln, dass die Länge des Formgedächtnis-Drahts ganz nach Bedarf maßgeschneidert und störungsfrei gesteuert werden kann.

    Während beim Menschen die Befehle, etwa den Arm zu strecken oder zu beugen, vom Gehirn über Nervenimpulse an die Muskeln weitergegeben werden, geschieht dies hier über einen „Mikro-Controller“, einen kleinen Halbleiterchip, auf dem alles für die Regelung erforderliche enthalten ist. Das System soll ganz ohne Sensoren auskommen. Die Forscher modellieren die Abläufe, das heißt, sie erfassen die für die Prozesse wesentlichen physikalischen Gegebenheiten und übersetzen sie in mathematische Gleichungen. Unsichtbar berechnen und schätzen darauf aufbauende Algorithmen etwa Störungen und geben sofort Befehle, die diesen entgegenwirken. Da der Draht bei Wärme seine Länge verändert, ist beispielsweise ein kalter Luftzug störend. Die Saarbrücker Wissenschaftler entwickeln derzeit neuartige Echtzeit-Schätzverfahren und Regelungsmethoden, die solche Temperaturschwankungen oder wechselnde Luftströmungen automatisch ausgleichen sollen.

    Kontakt:
    Professor Stefan Seelecke (Lehrstuhl für Unkonventionelle Aktorik),
    Tel. 0681 302 71341; E-Mail: stefan.seelecke@mmsl.uni-saarland.de
    Thomas Würtz Tel.: 0681-302-71344; E-Mail: tw@mmsl.uni-saarland.de

    Professor Joachim Rudolph (Lehrstuhl für System- und Regelungstechnik):
    Tel.: 0681 302-64721; E-Mail: j.rudolph@lsr.uni-saarland.de
    Lothar Kiltz: Tel.: 0 681-302-64732; E-Mail: l.kiltz@lsr.uni-saarland.de

    Ein Pressefoto für den kostenlosen Gebrauch finden Sie unter http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.

    Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

    Der saarländische Forschungsstand (Halle 2, Stand C 40) wird organisiert von der Kontaktstelle für Wissens- und Technologietransfer der Universität des Saarlandes (KWT). Sie ist zentraler Ansprechpartner für Unternehmen und initiiert unter anderem Kooperationen mit Saarbrücker Forschern. Seit kurzem ist die Universität des Saarlandes auch „Gründerhochschule“ und wird dabei vom Bundeswirtschaftsministerium gefördert. http://www.uni-saarland.de/kwt


    Images

    Hauchfein und auf dem Bild kaum sichtbar sind die Drähte, die das Modell der Fledermaus "zum Leben erwecken" können. Forscherin Nicole Lewis aus dem Team um Professor Seelecke hat an den Modellen für das North Carolina Museum of Natural Sciences mitgearbeitet. Durch das Zusammenspiel mehrerer intelligenter Drähte ahmen die Modelle den echten Flügelschlag der Fledermäuse naturgetreu nach.
    Hauchfein und auf dem Bild kaum sichtbar sind die Drähte, die das Modell der Fledermaus "zum Leben e ...
    Foto: Oliver Dietze
    None


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Electrical engineering, Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Hauchfein und auf dem Bild kaum sichtbar sind die Drähte, die das Modell der Fledermaus "zum Leben erwecken" können. Forscherin Nicole Lewis aus dem Team um Professor Seelecke hat an den Modellen für das North Carolina Museum of Natural Sciences mitgearbeitet. Durch das Zusammenspiel mehrerer intelligenter Drähte ahmen die Modelle den echten Flügelschlag der Fledermäuse naturgetreu nach.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).