idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/06/2013 16:12

Commands from the matrix: cellular environment controls neuronal connections

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. Researchers at the Ruhr-Universität have found evidence that this complex network of molecules controls the formation and activity of the neuronal connections.

    Commands from the matrix
    Cellular environment controls formation and activity of neuronal connections
    Journal of Neuroscience: RUB researchers report on the role of the extracellular matrix

    Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. Researchers at the Ruhr-Universität have found evidence that this complex network of molecules controls the formation and activity of the neuronal connections. The team led by Dr. Maren Geißler und Prof. Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology reports in the “Journal of Neuroscience” in collaboration with the team of Dr. Ainhara Aguado, Prof. Christian Wetzel and Prof. Hanns Hatt from the Department of Cell Physiology.

    Neurons and astrocytes in culture

    In cooperation with Prof. Uwe Rauch from Lund University in Sweden, Bochum’s biologists examined cells from the brains of two mouse species: a species with a normal extracellular matrix and a species which lacked four components of the extracellular matrix due to genetic manipulation, namely the molecules tenascin-C, tenascin-R, neurocan and brevican. They took the cells from the hippocampus, a brain structure that is crucial for the long-term memory. The team not only examined neurons but also astrocytes, which are in close contact with the neurons, support their function and secrete molecules for the extracellular matrix.

    Formation, stability and activity of the neuronal connections depend on the matrix

    The researchers cultivated the neurons and astrocytes together for four weeks with a specially developed culture strategy. Among other things, they observed how many connections, known as synapses, the neurons formed with each other and how stable these were over time. If either the astrocytes or the neurons in the culture dish derived from animals with a reduced extracellular matrix, these synapses proved to be less stable in the medium term, and their number was significantly reduced. Together with the Department of Cell Physiology at the RUB and the University of Regensburg, the team also showed that the neurons with a mutated matrix showed lower spontaneous activity than normal cells. The extracellular matrix thus regulates the formation, stability and activity of the neuronal connections. The researchers also examined a special structure of the extracellular matrix, the so-called perineuronal nets, which the Nobel laureate Camillo Golgi first described more than a century ago. They were significantly reduced in the environment of genetically modified cells.

    Bibliographic record

    M. Geissler, C. Gottschling, A. Aguado, U. Rauch, C.H. Wetzel, H. Hatt, A. Faissner (2013): Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation, Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.3275-12.2013

    Further information

    Prof. Dr. Andreas Faissner, Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28851, E-mail: Andreas.Faissner@rub.de

    Editor: Dr. Julia Weiler


    Images

    Neuron in the net: The illustration shows a neuron from the hippocampus of a mouse in cell culture, which is surrounded by a special structure of the extracellular matrix - a perineuronal net (blue). Various structures of the synapse are coloured red, green and yellow.
    Neuron in the net: The illustration shows a neuron from the hippocampus of a mouse in cell culture, ...
    Image: RUB, Department of Cell Morphology and Molecular Neurobiology
    None


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Neuron in the net: The illustration shows a neuron from the hippocampus of a mouse in cell culture, which is surrounded by a special structure of the extracellular matrix - a perineuronal net (blue). Various structures of the synapse are coloured red, green and yellow.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).