idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/04/2013 07:58

Nature Physics: „Lang ersehnte Begründung“ für mysteriöse Effekte in Hochtemperatursupraleitern

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Ein deutsch-französisches Forscherteam hat ein neues Modell aufgestellt, das erklärt, wie sich in Hochtemperatursupraleitern der sogenannte „Pseudogap“-Zustand bildet. Die Berechnungen sagen zwei gleichzeitig existierende Elektronenordnungen voraus. Supraleiter verlieren ab einer bestimmten Temperatur ihren elektrischen Widerstand und können Strom verlustfrei leiten. Die neue „Pseudogap“-Theorie könnte auch die lang ersehnte Begründung liefern, warum bestimmte keramische Kupferoxidverbindungen im Gegensatz zu herkömmlichen metallischen Supraleitern bei so ungewöhnlich hohen Temperaturen ihren elektrischen Widerstand verlieren.

    Zwei Ordnungssysteme für Elektronen
    „Lang ersehnte Begründung“ für mysteriöse Effekte in Hochtemperatursupraleitern
    Bochumer und Pariser Physiker berichten in „Nature Physics“

    Ein deutsch-französisches Forscherteam hat ein neues Modell aufgestellt, das erklärt, wie sich in Hochtemperatursupraleitern der sogenannte „Pseudogap“-Zustand bildet. Die Berechnungen sagen zwei gleichzeitig existierende Elektronenordnungen voraus. Supraleiter verlieren ab einer bestimmten Temperatur ihren elektrischen Widerstand und können Strom verlustfrei leiten. „Es ist nicht auszuschließen, dass die neue ‚Pseudogap‘-Theorie auch die lang ersehnte Begründung liefert, warum bestimmte keramische Kupferoxidverbindungen im Gegensatz zu herkömmlichen metallischen Supraleitern bei so ungewöhnlich hohen Temperaturen ihren elektrischen Widerstand verlieren“, sagen Prof. Dr. Konstantin Efetov und Dr. Hendrik Meier vom Lehrstuhl für Theoretische Festkörperphysik der Ruhr-Universität Bochum. Die Erkenntnisse erzielten sie in enger Kooperation mit Dr. Catherine Pépin vom Institut für Theoretische Physik in Saclay bei Paris. Das Team berichtet in der Zeitschrift „Nature Physics“.

    Sprungtemperatur bei keramischen Supraleitern deutlich höher als bei metallischen

    Supraleitung tritt nur bei sehr niedrigen Temperaturen unterhalb der sogenannten Sprungtemperatur auf; in metallischen Supraleitern liegt diese nahe dem absoluten Nullpunkt von 0 Grad Kelvin; das entspricht etwa -273 Grad Celsius. Kristalline Keramikmaterialien können jedoch bei Temperaturen bis zu 138 Grad Kelvin supraleitend sein. Forscher rätseln seit 25 Jahren, was die physikalischen Grundlagen dieser Hochtemperatursupraleitung sind.

    „Pseudogap“: Energielücke oberhalb der Sprungtemperatur

    Im supraleitenden Zustand wandern Elektronen zu zweit in sogenannten Cooper-Paaren durch das Kristallgitter eines Materials. Um ein Cooper-Paar aufzubrechen, sodass zwei freie Elektronen entstehen, braucht es eine bestimmte Energiemenge. Dieser Unterschied in der Energie der Cooper-Elektronen und der freien Elektronen wird Energielücke genannt. In supraleitenden Kupferoxidverbindungen, den Cupraten, tritt eine ähnliche Energielücke unter bestimmten Umständen auch oberhalb der Sprungtemperatur auf – das „Pseudogap“ oder die Pseudoenergielücke. Kennzeichnend für das „Pseudogap“ ist, dass die Energielücke nur von Elektronen mit bestimmten Geschwindigkeitsrichtungen wahrgenommen wird. Das Modell des deutsch-französischen Teams erlaubt jetzt neue Einblicke in das physikalische Innenleben des „Pseudogap“-Zustands.

    Zwei konkurrierende Elektronenordnungen im „Pseudogap“-Zustand

    Laut Modell beinhaltet der „Pseudogap“-Zustand gleichzeitig zwei Elektronenordnungen: die d-Wellen-Supraleitung, bei der die Elektronen eines Cooper-Paares in einer Kleeblattform umeinander kreisen, und eine Quadrupoldichtewelle. Bei letzterer handelt es sich um eine spezielle elektrostatische Struktur, bei der an jedem Kupferatom im zweidimensionalen Kristallgitter ein Quadrupolmoment vorliegt – also zwei gegenüberliegende Bereiche negativer Ladung und zwei gegenüberliegende Bereiche positiver Ladung. d-Wellen-Supraleitung und Quadrupoldichtewelle konkurrieren im „Pseudogap“-Zustand miteinander. Aufgrund thermischer Fluktuationen kann sich keine der beiden Ordnungen durchsetzen. Kühlt man das System jedoch ab, werden die thermischen Fluktuationen schwächer und eine der beiden Ordnungen gewinnt die Oberhand: die Supraleitung. Die kritische Temperatur, bei der das passiert, kann in dem Modell wesentlich höher sein als die Sprungtemperatur von konventionellen metallischen Supraleitern. Das Modell könnte somit erklären, warum die Sprungtemperatur in den keramischen Supraleitern so viel höher liegt.

    Cuprate

    Hochtemperatursupraleiter auf Kupferoxidbasis werden auch Cuprate genannt. Zusätzlich zu Kupfer und Sauerstoff können sie zum Beispiel die Elemente Yttrium und Barium enthalten (YBa2Cu3O7). Damit das Material supraleitend wird, bringen Forscher “positive Löcher“, also Elektronenfehlstellen, in das Kristallgitter ein. Durch diese können die Elektronen in Cooper-Paaren „fließen“. Man spricht von Lochdotierung. Der „Pseudogap“-Zustand stellt sich nur ein, wenn das Cuprat weder zu wenig noch zu stark lochdotiert ist.

    Titelaufnahme

    K.B. Efetov, H. Meier, C. Pépin (2013): Pseudogap state near a quantum critical point, Nature Physics, DOI: 10.1038/NPHYS2641

    Weitere Informationen

    Prof. Dr. Konstantin Efetov, Lehrstuhl für Theoretische Festkörperphysik, Institut für Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24844, E-Mail: efetov@tp3.rub.de

    Dr. Hendrik Meier, Lehrstuhl für Theoretische Festkörperphysik, Institut für Physik III der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23744, E-Mail: hmeier@tp3.rub.de

    Redaktion: Dr. Julia Weiler


    Images

    An jedem Kupferatom (graue Kugeln) liegt ein Quadrupolmoment vor; in der Summe bilden diese eine Art Schachbrettmuster, wobei sich die einzelnen Quadrate des Schachbretts in der Ausrichtung der positiv und negativ geladenen Bereiche unterscheiden (grün: positive Bereiche links und rechts; grau: positive Bereiche oben und unten). An den Grenzen zwischen grünen und grauen Flächen findet ein Vorzeichenwechsel statt. Grenznahe Kupferatome weisen ein kleineres Quadrupolmoment auf als Kupferatome in der Mitte der Flächen.
    An jedem Kupferatom (graue Kugeln) liegt ein Quadrupolmoment vor; in der Summe bilden diese eine Art ...
    Konstantin Efetov und Hendrik Meier (Institut für Theoretische Physik III)
    None


    Attachment
    attachment icon Zusätzliche Information für Wissenschaftsjournalisten

    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    An jedem Kupferatom (graue Kugeln) liegt ein Quadrupolmoment vor; in der Summe bilden diese eine Art Schachbrettmuster, wobei sich die einzelnen Quadrate des Schachbretts in der Ausrichtung der positiv und negativ geladenen Bereiche unterscheiden (grün: positive Bereiche links und rechts; grau: positive Bereiche oben und unten). An den Grenzen zwischen grünen und grauen Flächen findet ein Vorzeichenwechsel statt. Grenznahe Kupferatome weisen ein kleineres Quadrupolmoment auf als Kupferatome in der Mitte der Flächen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).