Auf Licht als Medium, um Informationen zu übertragen, setzen die Menschen seit Langem: So senden Leuchttürme schon seit der Antike Lichtsignale aus und in heutigen Breitbandinternetverbindungen werden kurze Lichtpulse über Glasfaserkabel verschickt. Einen Schritt weiter soll die Quantenkommunikation künftig gehen: Hier werden dann nicht mehr viele Lichtteilchen auf den Weg gebracht, sondern nur noch einzelne Teilchen, die Photonen. Physiker um Professor Jürgen Eschner von der Universität des Saarlandes haben nun direkt beobachten können, wie ein Photon von einem Atom auf ein anderes Atom übertragen wird. Ihre Studie wurde in der Fachzeitschrift „Physical Review Letters“ veröffentlicht.
Bei dem klassischen Modell der Kommunikation wird eine Information von einem Sender auf einen Empfänger übertragen. Dieses Prinzip lässt sich auch auf die Welt der kleinsten Teilchen übertragen, wenn ein Photon (Lichtquant) von einem Atom auf ein anderes übertragen wird. Die Entstehung des Photons ist dabei immer gleich: Atome werden angeregt, die Elektronen in der Hülle hüpfen auf ein höheres Energieniveau, und beim Herunterfallen wird die zugeführte Energie als einzelnes Lichtquant abgestrahlt. Genau diesen Entstehungsprozess möchten Forscher kontrolliert durchführen, um ihn für die künftige Quanteninformationstechnologie nutzbar zu machen und die Informationsübertragung zwischen einzelnen Atomen zu erzielen.
Physiker um Professor Jürgen Eschner von der Universität des Saarlandes haben nun erstmals beobachtet, wie diese Art der Informationsübertragung im atomaren Mikrokosmos abläuft. Genauer gesagt: Sie konnten verfolgen, wie ein Atom ein Photon absorbiert, das zuvor von einem anderen Atom ausgesendet worden ist. Hierfür haben die Saarbrücker Forscher in einem Versuchsaufbau ein Atom zunächst mittels Laserpulssequenzen angeregt. Daraufhin sendet das Teilchen ein Photon aus, das wiederum durch ein Lichtfaserkabel zu einem ein Meter weiter entfernten Atom wandert, das das Photon absorbiert. Mit einer speziellen Nachweismethode können die Physiker dabei registrieren, ob das Lichtquant auf das Teilchen trifft.
„Sobald das Atom das Photon absorbiert hat, können wir dies durch ein helles Lichtsignal sehen, welches dasselbe Atom aussendet“, erklärt Eschner. „Das Prinzip kann man mit dem Einschalten einer Glühbirne vergleichen: Das Photon ist hierbei der Finger, der die Glühbirne, in diesem Fall das Atom, mit einem Schalter anknipst.“ In ihrer Studie haben die Saarbrücker Physiker das einzelne Sender-Atom circa 100.000 pro Sekunde angeregt und damit bis zu 3.000 Photonen pro Sekunde durch die Lichtfaser geschickt. Im Vergleich dazu scheint die Ausbeute gering: Gerade einmal ein Lichtteilchen trifft in der Sekunde auf das Atom am anderen Ende des Kabels – eben so, als ob der Finger bei mehrmaligen Versuchen den Lichtschalter nicht immer richtig trifft. Aber ein Treffer pro Sekunde reicht den Physikern bereits, um dieses Phänomen beobachten und auswerten zu können.
Die Ergebnisse dieser Arbeit helfen den Forschern der Saar-Uni dabei, die Quantentechnologie weiter voranzubringen. In einem nächsten Schritt wollen sie bei der Kommunikation zwischen zwei Atomen kontrolliert Informationen übermitteln. „Photonen können in zwei Polarisationsformen vorkommen, als vertikal oder horizontal schwingende Lichtwelle“, erklärt der Physiker. „Diese Information möchten wir im Atom speichern.“ Dabei werden dann die Besonderheiten der Quantenwelt interessant: Die Einzelteilchen können gleichzeitig in verschiedenen Zuständen existieren, das heißt in jeder Überlagerung aus vertikaler und horizontaler Polarisation. „Genau diese Quanteninformationen möchten wir künftig abspeichern“, so Eschner.
Die Arbeit der Saarbrücker Wissenschaftler ist unter anderem im Rahmen des Verbundprojekts QuOReP (Quanten-Repeater-Plattform mit Methoden der Quantenoptik), das vom Bundesministerium für Bildung und Forschung gefördert wird, entstanden.
Die Studie „Heralded Photonic Interaction between Distant Single Ions“ wurde in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht:
DOI 10.1103/PhysRevLett.110.213603
Pressefotos für den kostenlosen Gebrauch finden Sie unter www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.
Fragen beantworten:
Prof. Dr. Jürgen Eschner
Experimentalphysik
Tel.: 0681 302-58016
E-Mail: juergen.eschner(at)physik.uni-saarland.de
Michael Schug
Experimentalphysik
Tel.: 0681 302-70378
E-Mail: mschug(at)physik.uni-saarland.de
Phyik-Professor Jürgen Eschner.
Foto: Saar-Uni
None
Solche Ionenfallen - in den sogenannten Vakuumapparaturen rechts und links im Bild - nutzen die Saar ...
Foto: AG Jürgen Eschner
None
Criteria of this press release:
Journalists
Physics / astronomy
transregional, national
Research results
German
Phyik-Professor Jürgen Eschner.
Foto: Saar-Uni
None
Solche Ionenfallen - in den sogenannten Vakuumapparaturen rechts und links im Bild - nutzen die Saar ...
Foto: AG Jürgen Eschner
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).