idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/24/2002 07:14

Physiker: Nach Experimenten in Dortmund wird Weg frei zu neuen Speichertechnologien

Ole Lünnemann Referat Hochschulkommunikation
Universität Dortmund

    Über neue Perspektiven für die Grundlagenforschung wie für die praktische Entwicklung der Elektronik und der Datenspeicherung berichtet heute (24.10.02) die renommierte Zeitschrift "Nature". Der Experimentalphysiker Dr. Manfred Fiebig, bislang an der Universität Dortmund und inzwischen am Berliner Max Born Institut tätig, hat an dem Forschungsprojekt maßgeblich mitgewirkt.

    Hier ein Summary zum Artikel "Observation of coupled magnetic and electric domains" von M. Fiebig, Th. Lottermoser, D. Fröhlich, A.V. Goltsev und R.V. Pisarev in Nature 419, 818 (2002) vom heutigen 24. Oktober 2002

    Kooperation Dortmund - Berlin - St. Petersburg

    Die Verbesserung der Materialien, und Techniken zur Datenspeicherung ist ein wichtiges Ziel der aktuellen Forschung. Bisher existieren eine Vielzahl magnetischer, elektrischer oder optischer Techniken, um Informationen in Abfolgen sogenannter Bits, das heißt, binärer Zustände, die entweder 0 oder 1 repräsentieren, zu speichern. Die Entwicklung neuer Methoden, die vorhandene Speichertechniken miteinander verbinden, könnte zu wesentlichen Fortschritten führen. In dem oben genannten Nature-Artikel wird nun erstmals über eine Wechselwirkung zwischen verschiedenen Effekten, die zur Datenspeicherung benutzt werden, berichtet. Die experimentellen Arbeiten hierzu wurden an der Universität Dortmund durchgeführt und dort und am Max-Born-Institut (MBI) in Berlin in Zusammenarbeit mit Forschern vom
    Ioffe-Institut in St. Petersburg ausgewertet.

    Zur Speicherung benutzt man heute vorwiegend ferromagnetische Materialien, die sich über ihr Magnetfeld leicht beschreiben und auslesen lassen. Daneben existieren Antiferromagnete, die zwar kein Feld besitzen, jedoch für die Stabilisierung ferromagnetischer Strukturen unverzichtbar sind. Neben der magnetischen Ordnung, die auf eine einheitliche Bewegung von Elektronen in Atomen zurückgeht, ist auch eine ferro- oder antiferroelektrische Ordnung in Form einer einheitlichen statischen Ausrichtung von Elektronen bekannt. Ferroelektrische Materialien erlauben den Bau schneller und kompakter permanenter Speicherelemente wie sie den Bedürfnissen zur Datenspeicherung vor allem in dem Bereich der modernen Unterhaltungselektronik entsprechen.

    Magnetische und elektrische Ordnung vereint

    Die Untersuchung elektrisch und magnetisch geordneter YMnO3-Kristalle förderte Überraschendes zu Tage. Es wurde beobachtet, dass jeder Wechsel der elektrischen Ordnung von einem simultanen Wechsel der magnetischen Ordnung begleitet wird. Damit ergibt sich die Möglichkeit, magnetische Zustände durch Anlegen elektrischer Felder zu schalten, oder umgekehrt, auszulesen.

    Voraussetzung für diese Beobachtung war die Entwicklung neuer experimenteller Methoden, mit denen sich sowohl elektrische als auch magnetische Strukturen gleichzeitig untersuchen lassen. Hier bot sich die Erzeugung der optischen zweiten Harmonischen an, mit der man die Verdopplung der Frequenz einer Lichtwelle in einem Kristall bezeichnet. Dieser üblicherweise sehr schwache Prozess, der nur bei der Anregung mit intensivem Laserlicht beobachtet werden kann, hängt empfindlich von der kristallinen Symmetrie ab. Da diese durch die elektrische und magnetische Ordnung beeinflusst wird, kann man mithilfe der Erzeugung der zweiten Harmonischen elektrische und magnetische Strukturen direkt abbilden. In früheren Arbeiten der Autoren wurde bereits gezeigt, dass sich diese Technik insbesondere zur Darstellung antiferromagnetischer Strukturen eignet, für deren Abbildung es kein alternatives allgemein anwendbares Verfahren gibt.

    Weg frei zu neuartigen Speichertechnologien

    Abgesehen von der sehr grundsätzlichen Bedeutung einer Kreuzkorrelation zwischen ansonsten unabhängigen Ordnungsstrukturen eröffnen sich vielfältige technologische Möglichkeiten. So könnte zum Beispiel mit geeigneten magnetisch und elektrisch geordneten Materialien der langsame thermo-magnetische Schreibprozess magnetooptischer Datenträger durch schnelles magnetisches Schalten über ein angelegtes elektrisches Feld ersetzt werden.

    Zukünftige Experimente werden sich mit den physikalischen Grundlagen von Kopplungen in mehrfach geordneten Substanzen beschäftigen. Außerdem ist geplant, die bisherigen Ergebnisse auf dünne Materialfilme, wie sie für technologische Anwendungen erforderlich sind, zu übertragen. Des weiteren soll die zeitliche Dynamik des magnetischen Schaltverhaltens mit den am MBI vorhandenen Kurzpulslasern optisch untersucht werden.
    ____________________________________________________________
    Nähere Information: Dr. Manfred Fiebig, Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany, Tel: 030-63921404, Fax: O30-6392-1489, E-Mail: fiebig@mbi-berlin.de


    Images

    Criteria of this press release:
    Information technology, Mathematics, Media and communication sciences, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).