idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/19/2013 10:39

Physiker der Uni Graz zeigen: elektrische Felder im Nanobereich lassen sich räumlich darstellen

Mag. Gudrun Pichler Presse + Kommunikation
Karl-Franzens-Universität Graz

    Die Strukturen von Nanopartikeln sind noch längst nicht alle entschlüsselt. Ein entscheidender Schritt zur Beschreibung der Elektronenschwingungen an der Oberfläche von metallischen Nanopartikeln ist nun Physikern der Karl-Franzens-Universität Graz gelungen. Sie konnten erstmals zeigen, dass mit den Methoden der Computertomographie dreidimensionale Bilder von elektrischen Feldern auf Nanoteilchen erstellt werden können. Die Forschungsergebnisse wurden kürzlich im renommierten Fachjournal „Physical Review Letters“ publiziert.

    Nanopartikel eröffnen modernen Technologien durch ihre außergewöhnlichen physikalischen Eigenschaften eine Fülle neuer Möglichkeiten. Doch längst sind nicht alle Geheimnisse der winzigen Strukturen gelüftet. Ein entscheidender Schritt zur Beschreibung der Elektronenschwingungen an der Oberfläche von metallischen Nanopartikeln ist nun Physikern der Karl-Franzens-Universität Graz gelungen. Sie konnten erstmals zeigen, dass mit den Methoden der Computertomographie (CT) dreidimensionale Bilder von elektrischen Feldern auf Nanoteilchen erstellt werden können. Damit lässt sich exakt erkennen, wo „Hot Spots“ – besonders starke Felder – zu finden sind. Eine wichtige Information für die Entwicklung zukunftsträchtiger Anwendungen, von hochsensiblen Sensoren bis hin zur ultraschnellen Datenübertragung. Die Forschungsergebnisse wurden kürzlich im renommierten Fachjournal „Physical Review Letters“ publiziert.

    „An der Oberfläche von metallischen Nanopartikeln kommt es zu Schwingungen der Elektronendichte, die als Plasmonen bezeichnet werden. Diese bilden an bestimmten Stellen der Nanoteilchen besonders starke elektrische Felder, so genannte Hot Spots“, informiert Anton Hörl, MSc, aus der Arbeitsgruppe von Ao.Univ.-Prof. Dr. Ulrich Hohenester am Institut für Physik der Uni Graz. Hot Spots können dazu genutzt werden, Licht im Nanometer-Bereich zu fokussieren. „Das ist zum Beispiel notwendig, wenn Licht in winzigen Strukturen zur Datenübertragung genutzt werden soll, etwa für den optischen Chip“, ergänzt Hörl.

    „Zur Erforschung von Plasmonen wird ein Elektronenstrahl auf einen bestimmten Punkt der Probe fokussiert und gemessen, wie viel Energie die Elektronen durch Wechselwirkung mit den Plasmonen verlieren. Je stärker die elektrischen Felder auf den Nanopartikeln sind, desto größer ist die Wahrscheinlichkeit, ein Plasmon anzuregen, wodurch dem Elektronenstrahl Energie entzogen wird“, erklärt Ulrich Hohenester das Verfahren.

    Wird der Elektronenstrahl über die Probe bewegt, entsteht ein zweidimensionales Bild der elektrischen Felder. Anton Hörl hat im Rahmen seiner Dissertation in Kooperation mit Dr. Andreas Trügler anhand von Computersimulationen erstmals gezeigt, dass durch Drehung der Probe eine Reihe von 2D-Bildern gewonnen werden kann, aus denen sich dann mit Hilfe der Computertomographie eine exakte 3D-Rekonstruktion der elektrischen Felder erstellen lässt. Hörls Doktorarbeit ist in den vom Österreichischen Wissenschaftsfonds FWF finanzierten Spezialforschungsbereich „NextLite“ eingebettet.
    Weiterführende Experimente werden die Theoretischen Physiker der Karl-Franzens-Universität Graz mit der Arbeitsgruppe von Ao.Univ.-Prof. Dr. Ferdinand Hofer an der TU Graz im Rahmen der strategischen Kooperation NAWI Graz durchführen.

    Publikation:
    Tomography of particle plasmon fields from electron energy loss spectroscopy
    Anton Hörl, Andreas Trügler, Ulrich Hohenester
    Physical Review Letters, August 2013
    http://prl.aps.org/pdf/PRL/v111/i7/e076801

    Kontakt:
    Ao.Univ.-Prof. Dr. Ulrich Hohenester
    Institut für Physik der Karl-Franzens-Universität Graz
    Tel.: 0316/380-5227
    E-Mail: ulrich.hohenester@uni-graz.at


    Images

    Schematische Darstellung der Tomographie von Nanoteilchen. Ein Elektronenstrahl wird über das stäbchenförmige Nanoteilchen gerastert und erzeugt zweidimensionale Aufnahmen der Plasmon-Felder aus verschiedenen Richtungen. Diese 2D-Bilder ermöglichen dann mit Hilfe von mathematischen Methoden der Computertomographie eine 3D-Rekonstruktion der elektrischen Felder und Hot Spots.
    Schematische Darstellung der Tomographie von Nanoteilchen. Ein Elektronenstrahl wird über das stäbch ...
    Source: Karl-Franzens-Universität Graz


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Schematische Darstellung der Tomographie von Nanoteilchen. Ein Elektronenstrahl wird über das stäbchenförmige Nanoteilchen gerastert und erzeugt zweidimensionale Aufnahmen der Plasmon-Felder aus verschiedenen Richtungen. Diese 2D-Bilder ermöglichen dann mit Hilfe von mathematischen Methoden der Computertomographie eine 3D-Rekonstruktion der elektrischen Felder und Hot Spots.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).