idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/06/2013 10:58

Maximale Geschwindigkeit für das weltweite Netz

Torsten Büttner Presse- und Öffentlichkeitsarbeit
Deutsche Telekom Hochschule für Telekommunikation Leipzig (HfTL), University of Applied Sciences

    Ein Forscher der HfTL hat zusammen mit Kollegen der EPFL in Lausanne eine Methode entwickelt, um Daten mit der maximal möglichen Symbolrate in optischen Glasfasern zu übertragen.
    Optische Fasern sind das Rückgrat der gesamten modernen Kommunikation und des Internet. Die Anfragen an Internet-Suchmaschinen und ihre Ergebnisse, Filme, Musik und viele andere Daten werden mit Hilfe von Lichtsignalen über das weltweite Glasfasernetz übertragen. Glasfasern haben eine immense Kapazität und sind damit bislang in der Lage, die riesigen, täglich erzeugten Datenmengen zu transportieren.

    Neue Anwendungen wie z.B. das hochauflösende und demnächst wahrscheinlich das ultra-hochauflösende Fernsehen on-demand, aber auch Smartphones, Tablets und andere Geräte mit immer höherer Bandbreite führen allerdings dazu, dass die Datenrate in den weltweiten Kommunikationsnetzen derzeit mit einer Rate von 38% pro Jahr steigt. Die Glasfasernetze haben zwar eine sehr große, aber keine unendliche Kapazität.
    Thomas Schneider, Professor der Hochschule für Telekommunikation Leipzig (HfTL), hat während seines Aufenthalts als Gastprofessor an der EPFL in Lausanne, Schweiz, zusammen mit den Arbeitsgruppen von Camille Sophie Brés und Luc Thévenaz eine innovative Methode entwickelt, wie mit relativ wenig Aufwand, die maximal mögliche Symbolrate in optischen Fasern übertragen werden kann. Dies kann zu einer drastischen Steigerung der übertragbaren Datenraten und damit zu einem weiteren, ungehinderten Wachstum des Internet führen.
    Lichtsignale, die in den Fasernetzen übertragen werden, sind die Arbeitspferde des Internet. Diese Lichtsignale sind elektromagnetische Wellen, deren Parameter in Abhängigkeit von der zu übertragenden Information verändert werden. Die Lichtsignale in den Glasfasern haben Wellenlängen von 1550 nm und liegen damit im Bereich des nahen Infrarot. Das Licht, welches der Mensch direkt mit seinen Augen sehen kann, hat hingegen Wellenlängen zwischen 800 nm (Rot) und 400 nm (Violett). Der einfachste Parameter des Lichts der verändert werden kann, ist die Amplitude. Das Licht wird also einfach an- und ausgeschalten, je nachdem ob eine „1“ oder eine „0“ des digitalen Signals übertragen werden soll. Um höhere Datenraten übertragen zu können, werden heute aber auch die Phase, oder die Frequenz des Lichts zur Übertragung der Information genutzt. Diese Veränderung der Parameter der Welle, in Abhängigkeit von dem zu übertragenden Signal, wird Modulation genannt. Eine solche Modulation führt aber dazu, dass neue Wellen mit neuen Frequenzen entstehen. Je höher die zu übertragenden Datenraten sind, umso mehr Frequenzen werden dazu benötigt. Die Menge der Frequenzen, die für das modulierte Signal benötigt werden, wird als Spektrum bezeichnet.
    Eine Glasfaser kann nur eine bestimmte Menge von Frequenzen, und damit nur eine bestimmte maximale Menge an Information transportieren. Damit eine Vielzahl an Information gleichzeitig in der Glasfaser übertragen werden kann, wird das gesamte zur Verfügung stehende Spektrum der Faser in einzelne Kanäle aufgeteilt, so wie z.B. die Fahrspuren auf einer Autobahn. Die maximal mögliche Menge an Information lässt sich transportieren, wenn die Kanäle so dicht wie möglich gepackt werden können. Damit das möglich wird, muss jeder einzelne Kanal ein rechteckförmiges Spektrum aufweisen.
    Ein rechteckförmiges Spektrum bedeutet aber, dass das Signal mit einer sinus cardinalis (sinc)-Funktion moduliert werden muss. Diese Funktion ist aber unendlich lang ausgedehnt und damit praktisch leider nicht realisierbar. Es gab bereits mehrere Versuche solche Pulse zu erzeugen und für die Datenübertragung zu nutzen, allerdings sind diese meist sehr aufwändig und besitzen kein rechteckförmiges Spektrum, oder sie sind nicht in der Lage, die gesamte Bandbreite der Glasfaser zu füllen.
    Während seiner Gastprofessur an der EPFL entwickelte Thomas Schneider von der HfTL in Diskussionen mit Kollegen die entscheidende Idee, an Stelle eines einzelnen sinc-Pulses, eine Pulsfolge zu nehmen. Im Gegensatz zum nur theoretisch realisierbaren einzelnen Puls lässt sich diese Pulsfolge sehr einfach durch einen Frequenzkamm herstellen. Damit lassen sich die Pulse direkt im optischen Bereich erzeugen und jeder einzelne Kanal kann ein sehr breites, rechteckförmiges Spektrum aufweisen. In Zusammenarbeit mit den beiden Gruppen von Camille Sophie Brés und Luc Thevénaz konnte der Nachweis erbracht werden, dass die Pulsfolge dieselben Eigenschaften für eine Datenübertragung aufweist wie die einzelnen Pulse. Gleichzeitig konnte in ersten Experimenten gezeigt werden, dass sich diese Pulse tatsächlich sehr einfach erzeugen lassen und ein annähernd ideales rechteckförmiges Spektrum haben. Für eine Realisierung in den weltweiten Glasfasernetzen müssen nur der Sender und Empfänger ausgetauscht werden. Damit eröffnen die neuen optisch erzeugten Pulse die Möglichkeit, Daten mit der maximalen Geschwindigkeit über optische Glasfasern zu übertragen.

    Kontakt: Prof. Dr. rer .nat. Thomas Schneider
    schneider@hft-leipzig.de

    Die Hochschule für Telekommunikation Leipzig ist eine durch das sächsische Staatsministerium für Wissenschaft und Kunst anerkannte private Hochschule im Freistaat Sachsen.
    Die HfTL steht für Lehre und Forschung im Bereich der Informations- und Kommunikationstechnologien und ist die einzige deutsche Hochschule mit diesem Spezialprofil. Sie bildet rund 1.200 Studierende in den direkten, dualen und berufsbegleitenden Bachelorstudiengängen Informations- und Mediendesign, Wirtschaftsinformatik, Kommunikations- und Medieninformatik, sowie in den Masterstudiengängen Wirtschaftsinformatik und Informations- und Kommunikationstechnik aus.


    More information:

    http://www.hft-leipzig.de


    Images

    Grafische Darstellung des Lichtsignals in einer Glasfaser
    Grafische Darstellung des Lichtsignals in einer Glasfaser
    Source: Jamani Caillet / EPFL


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Electrical engineering, Energy, Information technology
    transregional, national
    Research projects, Research results
    German


     

    Grafische Darstellung des Lichtsignals in einer Glasfaser


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).